Package mdp :: Package nodes :: Class AdaBoostClassifierScikitsLearnNode
[hide private]
[frames] | no frames]

Class AdaBoostClassifierScikitsLearnNode



An AdaBoost classifier.

This node has been automatically generated by wrapping the ``sklearn.ensemble.weight_boosting.AdaBoostClassifier`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

An AdaBoost [1] classifier is a meta-estimator that begins by fitting a
classifier on the original dataset and then fits additional copies of the
classifier on the same dataset but where the weights of incorrectly
classified instances are adjusted such that subsequent classifiers focus
more on difficult cases.

This class implements the algorithm known as AdaBoost-SAMME [2].

Read more in the :ref:`User Guide <adaboost>`.

**Parameters**

base_estimator : object, optional (default=DecisionTreeClassifier)
    The base estimator from which the boosted ensemble is built.
    Support for sample weighting is required, as well as proper `classes_`
    and `n_classes_` attributes.

n_estimators : integer, optional (default=50)
    The maximum number of estimators at which boosting is terminated.
    In case of perfect fit, the learning procedure is stopped early.

learning_rate : float, optional (default=1.)
    Learning rate shrinks the contribution of each classifier by
    ``learning_rate``. There is a trade-off between ``learning_rate`` and
    ``n_estimators``.

algorithm : {'SAMME', 'SAMME.R'}, optional (default='SAMME.R')
    If 'SAMME.R' then use the SAMME.R real boosting algorithm.
    ``base_estimator`` must support calculation of class probabilities.
    If 'SAMME' then use the SAMME discrete boosting algorithm.
    The SAMME.R algorithm typically converges faster than SAMME,
    achieving a lower test error with fewer boosting iterations.

random_state : int, RandomState instance or None, optional (default=None)
    If int, random_state is the seed used by the random number generator;
    If RandomState instance, random_state is the random number generator;
    If None, the random number generator is the RandomState instance used
    by `np.random`.

**Attributes**

``estimators_`` : list of classifiers
    The collection of fitted sub-estimators.

``classes_`` : array of shape = [n_classes]
    The classes labels.

``n_classes_`` : int
    The number of classes.

``estimator_weights_`` : array of floats
    Weights for each estimator in the boosted ensemble.

``estimator_errors_`` : array of floats
    Classification error for each estimator in the boosted
    ensemble.

``feature_importances_`` : array of shape = [n_features]
    The feature importances if supported by the ``base_estimator``.

See also

AdaBoostRegressor, GradientBoostingClassifier, DecisionTreeClassifier

**References**

.. [1] Y. Freund, R. Schapire, "A Decision-Theoretic Generalization of
       on-Line Learning and an Application to Boosting", 1995.

.. [2] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009.

Instance Methods [hide private]
 
__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
An AdaBoost classifier.
 
_get_supported_dtypes(self)
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
 
_label(self, x)
 
_stop_training(self, **kwargs)
Transform the data and labels lists to array objects and reshape them.
 
label(self, x)
Predict classes for X.
 
stop_training(self, **kwargs)
Build a boosted classifier from the training set (X, y).

Inherited from PreserveDimNode (private): _set_input_dim, _set_output_dim

Inherited from unreachable.newobject: __long__, __native__, __nonzero__, __unicode__, next

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

    Inherited from ClassifierCumulator
 
_check_train_args(self, x, labels)
 
_train(self, x, labels)
Cumulate all input data in a one dimensional list.
 
train(self, x, labels)
Cumulate all input data in a one dimensional list.
    Inherited from ClassifierNode
 
_execute(self, x)
 
_prob(self, x, *args, **kargs)
 
execute(self, x)
Process the data contained in x.
 
prob(self, x, *args, **kwargs)
Predict probability for each possible outcome.
 
rank(self, x, threshold=None)
Returns ordered list with all labels ordered according to prob(x) (e.g., [[3 1 2], [2 1 3], ...]).
    Inherited from Node
 
__add__(self, other)
 
__call__(self, x, *args, **kwargs)
Calling an instance of Node is equivalent to calling its execute method.
 
__repr__(self)
repr(x)
 
__str__(self)
str(x)
 
_check_input(self, x)
 
_check_output(self, y)
 
_get_train_seq(self)
 
_if_training_stop_training(self)
 
_inverse(self, x)
 
_pre_execution_checks(self, x)
This method contains all pre-execution checks.
 
_pre_inversion_checks(self, y)
This method contains all pre-inversion checks.
 
_refcast(self, x)
Helper function to cast arrays to the internal dtype.
 
_set_dtype(self, t)
 
copy(self, protocol=None)
Return a deep copy of the node.
 
get_current_train_phase(self)
Return the index of the current training phase.
 
get_dtype(self)
Return dtype.
 
get_input_dim(self)
Return input dimensions.
 
get_output_dim(self)
Return output dimensions.
 
get_remaining_train_phase(self)
Return the number of training phases still to accomplish.
 
get_supported_dtypes(self)
Return dtypes supported by the node as a list of dtype objects.
 
has_multiple_training_phases(self)
Return True if the node has multiple training phases.
 
inverse(self, y, *args, **kwargs)
Invert y.
 
is_training(self)
Return True if the node is in the training phase, False otherwise.
 
save(self, filename, protocol=-1)
Save a pickled serialization of the node to filename. If filename is None, return a string.
 
set_dtype(self, t)
Set internal structures' dtype.
 
set_input_dim(self, n)
Set input dimensions.
 
set_output_dim(self, n)
Set output dimensions.
Static Methods [hide private]
 
is_invertible()
Return True if the node can be inverted, False otherwise.
 
is_trainable()
Return True if the node can be trained, False otherwise.
Properties [hide private]

Inherited from object: __class__

    Inherited from Node
  _train_seq
List of tuples:
  dtype
dtype
  input_dim
Input dimensions
  output_dim
Output dimensions
  supported_dtypes
Supported dtypes
Method Details [hide private]

__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
(Constructor)

 

An AdaBoost classifier.

This node has been automatically generated by wrapping the ``sklearn.ensemble.weight_boosting.AdaBoostClassifier`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

An AdaBoost [1] classifier is a meta-estimator that begins by fitting a
classifier on the original dataset and then fits additional copies of the
classifier on the same dataset but where the weights of incorrectly
classified instances are adjusted such that subsequent classifiers focus
more on difficult cases.

This class implements the algorithm known as AdaBoost-SAMME [2].

Read more in the :ref:`User Guide <adaboost>`.

**Parameters**

base_estimator : object, optional (default=DecisionTreeClassifier)
    The base estimator from which the boosted ensemble is built.
    Support for sample weighting is required, as well as proper `classes_`
    and `n_classes_` attributes.

n_estimators : integer, optional (default=50)
    The maximum number of estimators at which boosting is terminated.
    In case of perfect fit, the learning procedure is stopped early.

learning_rate : float, optional (default=1.)
    Learning rate shrinks the contribution of each classifier by
    ``learning_rate``. There is a trade-off between ``learning_rate`` and
    ``n_estimators``.

algorithm : {'SAMME', 'SAMME.R'}, optional (default='SAMME.R')
    If 'SAMME.R' then use the SAMME.R real boosting algorithm.
    ``base_estimator`` must support calculation of class probabilities.
    If 'SAMME' then use the SAMME discrete boosting algorithm.
    The SAMME.R algorithm typically converges faster than SAMME,
    achieving a lower test error with fewer boosting iterations.

random_state : int, RandomState instance or None, optional (default=None)
    If int, random_state is the seed used by the random number generator;
    If RandomState instance, random_state is the random number generator;
    If None, the random number generator is the RandomState instance used
    by `np.random`.

**Attributes**

``estimators_`` : list of classifiers
    The collection of fitted sub-estimators.

``classes_`` : array of shape = [n_classes]
    The classes labels.

``n_classes_`` : int
    The number of classes.

``estimator_weights_`` : array of floats
    Weights for each estimator in the boosted ensemble.

``estimator_errors_`` : array of floats
    Classification error for each estimator in the boosted
    ensemble.

``feature_importances_`` : array of shape = [n_features]
    The feature importances if supported by the ``base_estimator``.

See also

AdaBoostRegressor, GradientBoostingClassifier, DecisionTreeClassifier

**References**

.. [1] Y. Freund, R. Schapire, "A Decision-Theoretic Generalization of
       on-Line Learning and an Application to Boosting", 1995.

.. [2] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009.

Overrides: object.__init__

_get_supported_dtypes(self)

 
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
Overrides: Node._get_supported_dtypes

_label(self, x)

 
Overrides: ClassifierNode._label

_stop_training(self, **kwargs)

 
Transform the data and labels lists to array objects and reshape them.

Overrides: Node._stop_training

is_invertible()
Static Method

 
Return True if the node can be inverted, False otherwise.
Overrides: Node.is_invertible
(inherited documentation)

is_trainable()
Static Method

 
Return True if the node can be trained, False otherwise.
Overrides: Node.is_trainable

label(self, x)

 

Predict classes for X.

This node has been automatically generated by wrapping the sklearn.ensemble.weight_boosting.AdaBoostClassifier class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

The predicted class of an input sample is computed as the weighted mean prediction of the classifiers in the ensemble.

Parameters

X : {array-like, sparse matrix} of shape = [n_samples, n_features]
The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR.

Returns

y : array of shape = [n_samples]
The predicted classes.
Overrides: ClassifierNode.label

stop_training(self, **kwargs)

 

Build a boosted classifier from the training set (X, y).

This node has been automatically generated by wrapping the sklearn.ensemble.weight_boosting.AdaBoostClassifier class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

Parameters

X : {array-like, sparse matrix} of shape = [n_samples, n_features]
The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR.
y : array-like of shape = [n_samples]
The target values (class labels).
sample_weight : array-like of shape = [n_samples], optional
Sample weights. If None, the sample weights are initialized to 1 / n_samples.

Returns

self : object
Returns self.
Overrides: Node.stop_training