Home | Trees | Indices | Help |
|
---|
|
A Bagging regressor. This node has been automatically generated by wrapping the ``sklearn.ensemble.bagging.BaggingRegressor`` class from the ``sklearn`` library. The wrapped instance can be accessed through the ``scikits_alg`` attribute. A Bagging regressor is an ensemble meta-estimator that fits base regressors each on random subsets of the original dataset and then aggregate their individual predictions (either by voting or by averaging) to form a final prediction. Such a meta-estimator can typically be used as a way to reduce the variance of a black-box estimator (e.g., a decision tree), by introducing randomization into its construction procedure and then making an ensemble out of it. This algorithm encompasses several works from the literature. When random subsets of the dataset are drawn as random subsets of the samples, then this algorithm is known as Pasting [1]_. If samples are drawn with replacement, then the method is known as Bagging [2]_. When random subsets of the dataset are drawn as random subsets of the features, then the method is known as Random Subspaces [3]_. Finally, when base estimators are built on subsets of both samples and features, then the method is known as Random Patches [4]_. Read more in the :ref:`User Guide <bagging>`. **Parameters** base_estimator : object or None, optional (default=None) The base estimator to fit on random subsets of the dataset. If None, then the base estimator is a decision tree. n_estimators : int, optional (default=10) The number of base estimators in the ensemble. max_samples : int or float, optional (default=1.0) The number of samples to draw from X to train each base estimator. - If int, then draw `max_samples` samples. - If float, then draw `max_samples * X.shape[0]` samples. max_features : int or float, optional (default=1.0) The number of features to draw from X to train each base estimator. - If int, then draw `max_features` features. - If float, then draw `max_features * X.shape[1]` features. bootstrap : boolean, optional (default=True) Whether samples are drawn with replacement. bootstrap_features : boolean, optional (default=False) Whether features are drawn with replacement. oob_score : bool Whether to use out-of-bag samples to estimate the generalization error. warm_start : bool, optional (default=False) When set to True, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new ensemble. n_jobs : int, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the building process. **Attributes** ``estimators_`` : list of estimators The collection of fitted sub-estimators. ``estimators_samples_`` : list of arrays The subset of drawn samples (i.e., the in-bag samples) for each base estimator. ``estimators_features_`` : list of arrays The subset of drawn features for each base estimator. ``oob_score_`` : float Score of the training dataset obtained using an out-of-bag estimate. ``oob_prediction_`` : array of shape = [n_samples] Prediction computed with out-of-bag estimate on the training set. If n_estimators is small it might be possible that a data point was never left out during the bootstrap. In this case, `oob_prediction_` might contain NaN. **References** .. [1] L. Breiman, "Pasting small votes for classification in large databases and on-line", Machine Learning, 36(1), 85-103, 1999. .. [2] L. Breiman, "Bagging predictors", Machine Learning, 24(2), 123-140, 1996. .. [3] T. Ho, "The random subspace method for constructing decision forests", Pattern Analysis and Machine Intelligence, 20(8), 832-844, 1998. .. [4] G. Louppe and P. Geurts, "Ensembles on Random Patches", Machine Learning and Knowledge Discovery in Databases, 346-361, 2012.
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
Inherited from Inherited from |
|||
Inherited from Cumulator | |||
---|---|---|---|
|
|||
|
|||
Inherited from Node | |||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|
|||
|
|||
|
|
|||
Inherited from |
|||
Inherited from Node | |||
---|---|---|---|
_train_seq List of tuples: |
|||
dtype dtype |
|||
input_dim Input dimensions |
|||
output_dim Output dimensions |
|||
supported_dtypes Supported dtypes |
|
A Bagging regressor. This node has been automatically generated by wrapping the ``sklearn.ensemble.bagging.BaggingRegressor`` class from the ``sklearn`` library. The wrapped instance can be accessed through the ``scikits_alg`` attribute. A Bagging regressor is an ensemble meta-estimator that fits base regressors each on random subsets of the original dataset and then aggregate their individual predictions (either by voting or by averaging) to form a final prediction. Such a meta-estimator can typically be used as a way to reduce the variance of a black-box estimator (e.g., a decision tree), by introducing randomization into its construction procedure and then making an ensemble out of it. This algorithm encompasses several works from the literature. When random subsets of the dataset are drawn as random subsets of the samples, then this algorithm is known as Pasting [1]_. If samples are drawn with replacement, then the method is known as Bagging [2]_. When random subsets of the dataset are drawn as random subsets of the features, then the method is known as Random Subspaces [3]_. Finally, when base estimators are built on subsets of both samples and features, then the method is known as Random Patches [4]_. Read more in the :ref:`User Guide <bagging>`. **Parameters** base_estimator : object or None, optional (default=None) The base estimator to fit on random subsets of the dataset. If None, then the base estimator is a decision tree. n_estimators : int, optional (default=10) The number of base estimators in the ensemble. max_samples : int or float, optional (default=1.0) The number of samples to draw from X to train each base estimator. - If int, then draw `max_samples` samples. - If float, then draw `max_samples * X.shape[0]` samples. max_features : int or float, optional (default=1.0) The number of features to draw from X to train each base estimator. - If int, then draw `max_features` features. - If float, then draw `max_features * X.shape[1]` features. bootstrap : boolean, optional (default=True) Whether samples are drawn with replacement. bootstrap_features : boolean, optional (default=False) Whether features are drawn with replacement. oob_score : bool Whether to use out-of-bag samples to estimate the generalization error. warm_start : bool, optional (default=False) When set to True, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new ensemble. n_jobs : int, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the building process. **Attributes** ``estimators_`` : list of estimators The collection of fitted sub-estimators. ``estimators_samples_`` : list of arrays The subset of drawn samples (i.e., the in-bag samples) for each base estimator. ``estimators_features_`` : list of arrays The subset of drawn features for each base estimator. ``oob_score_`` : float Score of the training dataset obtained using an out-of-bag estimate. ``oob_prediction_`` : array of shape = [n_samples] Prediction computed with out-of-bag estimate on the training set. If n_estimators is small it might be possible that a data point was never left out during the bootstrap. In this case, `oob_prediction_` might contain NaN. **References** .. [1] L. Breiman, "Pasting small votes for classification in large databases and on-line", Machine Learning, 36(1), 85-103, 1999. .. [2] L. Breiman, "Bagging predictors", Machine Learning, 24(2), 123-140, 1996. .. [3] T. Ho, "The random subspace method for constructing decision forests", Pattern Analysis and Machine Intelligence, 20(8), 832-844, 1998. .. [4] G. Louppe and P. Geurts, "Ensembles on Random Patches", Machine Learning and Knowledge Discovery in Databases, 346-361, 2012.
|
|
|
|
Predict regression target for X. This node has been automatically generated by wrapping the sklearn.ensemble.bagging.BaggingRegressor class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. The predicted regression target of an input sample is computed as the mean predicted regression targets of the estimators in the ensemble. Parameters
Returns
|
|
|
Build a Bagging ensemble of estimators from the training set (X, y). This node has been automatically generated by wrapping the sklearn.ensemble.bagging.BaggingRegressor class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters
Returns
|
Home | Trees | Indices | Help |
|
---|
Generated by Epydoc 3.0.1 on Tue Mar 8 12:39:48 2016 | http://epydoc.sourceforge.net |