Package mdp :: Package nodes :: Class LocallyLinearEmbeddingScikitsLearnNode
[hide private]
[frames] | no frames]

Class LocallyLinearEmbeddingScikitsLearnNode



Locally Linear Embedding

This node has been automatically generated by wrapping the ``sklearn.manifold.locally_linear.LocallyLinearEmbedding`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

Read more in the :ref:`User Guide <locally_linear_embedding>`.

**Parameters**

n_neighbors : integer
    number of neighbors to consider for each point.

n_components : integer
    number of coordinates for the manifold

reg : float
    regularization constant, multiplies the trace of the local covariance
    matrix of the distances.

eigen_solver : string, {'auto', 'arpack', 'dense'}
    auto : algorithm will attempt to choose the best method for input data

    arpack : use arnoldi iteration in shift-invert mode.
                For this method, M may be a dense matrix, sparse matrix,
                or general linear operator.
                Warning: ARPACK can be unstable for some problems.  It is
                best to try several random seeds in order to check results.

    dense  : use standard dense matrix operations for the eigenvalue
                decomposition.  For this method, M must be an array
                or matrix type.  This method should be avoided for
                large problems.

tol : float, optional
    Tolerance for 'arpack' method
    Not used if eigen_solver=='dense'.

max_iter : integer
    maximum number of iterations for the arpack solver.
    Not used if eigen_solver=='dense'.

method : string ('standard', 'hessian', 'modified' or 'ltsa')
    standard : use the standard locally linear embedding algorithm.  see
               reference [1]
    hessian  : use the Hessian eigenmap method. This method requires
               ``n_neighbors > n_components * (1 + (n_components + 1) / 2``
               see reference [2]
    modified : use the modified locally linear embedding algorithm.
               see reference [3]
    ltsa     : use local tangent space alignment algorithm
               see reference [4]

hessian_tol : float, optional
    Tolerance for Hessian eigenmapping method.
    Only used if ``method == 'hessian'``

modified_tol : float, optional
    Tolerance for modified LLE method.
    Only used if ``method == 'modified'``

neighbors_algorithm : string ['auto'|'brute'|'kd_tree'|'ball_tree']
    algorithm to use for nearest neighbors search,
    passed to neighbors.NearestNeighbors instance

random_state: numpy.RandomState or int, optional
    The generator or seed used to determine the starting vector for arpack
    iterations.  Defaults to numpy.random.

**Attributes**

``embedding_vectors_`` : array-like, shape [n_components, n_samples]
    Stores the embedding vectors

``reconstruction_error_`` : float
    Reconstruction error associated with `embedding_vectors_`

``nbrs_`` : NearestNeighbors object
    Stores nearest neighbors instance, including BallTree or KDtree
    if applicable.

**References**


.. [1] `Roweis, S. & Saul, L. Nonlinear dimensionality reduction
    by locally linear embedding.  Science 290:2323 (2000).`
.. [2] `Donoho, D. & Grimes, C. Hessian eigenmaps: Locally
    linear embedding techniques for high-dimensional data.
    Proc Natl Acad Sci U S A.  100:5591 (2003).`
.. [3] `Zhang, Z. & Wang, J. MLLE: Modified Locally Linear
    Embedding Using Multiple Weights.`
    http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382
.. [4] `Zhang, Z. & Zha, H. Principal manifolds and nonlinear
    dimensionality reduction via tangent space alignment.
    Journal of Shanghai Univ.  8:406 (2004)`

Instance Methods [hide private]
 
__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
Locally Linear Embedding
 
_execute(self, x)
 
_get_supported_dtypes(self)
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
 
_stop_training(self, **kwargs)
Concatenate the collected data in a single array.
 
execute(self, x)
Transform new points into embedding space.
 
stop_training(self, **kwargs)
Compute the embedding vectors for data X

Inherited from unreachable.newobject: __long__, __native__, __nonzero__, __unicode__, next

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

    Inherited from Cumulator
 
_train(self, *args)
Collect all input data in a list.
 
train(self, *args)
Collect all input data in a list.
    Inherited from Node
 
__add__(self, other)
 
__call__(self, x, *args, **kwargs)
Calling an instance of Node is equivalent to calling its execute method.
 
__repr__(self)
repr(x)
 
__str__(self)
str(x)
 
_check_input(self, x)
 
_check_output(self, y)
 
_check_train_args(self, x, *args, **kwargs)
 
_get_train_seq(self)
 
_if_training_stop_training(self)
 
_inverse(self, x)
 
_pre_execution_checks(self, x)
This method contains all pre-execution checks.
 
_pre_inversion_checks(self, y)
This method contains all pre-inversion checks.
 
_refcast(self, x)
Helper function to cast arrays to the internal dtype.
 
_set_dtype(self, t)
 
_set_input_dim(self, n)
 
_set_output_dim(self, n)
 
copy(self, protocol=None)
Return a deep copy of the node.
 
get_current_train_phase(self)
Return the index of the current training phase.
 
get_dtype(self)
Return dtype.
 
get_input_dim(self)
Return input dimensions.
 
get_output_dim(self)
Return output dimensions.
 
get_remaining_train_phase(self)
Return the number of training phases still to accomplish.
 
get_supported_dtypes(self)
Return dtypes supported by the node as a list of dtype objects.
 
has_multiple_training_phases(self)
Return True if the node has multiple training phases.
 
inverse(self, y, *args, **kwargs)
Invert y.
 
is_training(self)
Return True if the node is in the training phase, False otherwise.
 
save(self, filename, protocol=-1)
Save a pickled serialization of the node to filename. If filename is None, return a string.
 
set_dtype(self, t)
Set internal structures' dtype.
 
set_input_dim(self, n)
Set input dimensions.
 
set_output_dim(self, n)
Set output dimensions.
Static Methods [hide private]
 
is_invertible()
Return True if the node can be inverted, False otherwise.
 
is_trainable()
Return True if the node can be trained, False otherwise.
Properties [hide private]

Inherited from object: __class__

    Inherited from Node
  _train_seq
List of tuples:
  dtype
dtype
  input_dim
Input dimensions
  output_dim
Output dimensions
  supported_dtypes
Supported dtypes
Method Details [hide private]

__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
(Constructor)

 

Locally Linear Embedding

This node has been automatically generated by wrapping the ``sklearn.manifold.locally_linear.LocallyLinearEmbedding`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

Read more in the :ref:`User Guide <locally_linear_embedding>`.

**Parameters**

n_neighbors : integer
    number of neighbors to consider for each point.

n_components : integer
    number of coordinates for the manifold

reg : float
    regularization constant, multiplies the trace of the local covariance
    matrix of the distances.

eigen_solver : string, {'auto', 'arpack', 'dense'}
    auto : algorithm will attempt to choose the best method for input data

    arpack : use arnoldi iteration in shift-invert mode.
                For this method, M may be a dense matrix, sparse matrix,
                or general linear operator.
                Warning: ARPACK can be unstable for some problems.  It is
                best to try several random seeds in order to check results.

    dense  : use standard dense matrix operations for the eigenvalue
                decomposition.  For this method, M must be an array
                or matrix type.  This method should be avoided for
                large problems.

tol : float, optional
    Tolerance for 'arpack' method
    Not used if eigen_solver=='dense'.

max_iter : integer
    maximum number of iterations for the arpack solver.
    Not used if eigen_solver=='dense'.

method : string ('standard', 'hessian', 'modified' or 'ltsa')
    standard : use the standard locally linear embedding algorithm.  see
               reference [1]
    hessian  : use the Hessian eigenmap method. This method requires
               ``n_neighbors > n_components * (1 + (n_components + 1) / 2``
               see reference [2]
    modified : use the modified locally linear embedding algorithm.
               see reference [3]
    ltsa     : use local tangent space alignment algorithm
               see reference [4]

hessian_tol : float, optional
    Tolerance for Hessian eigenmapping method.
    Only used if ``method == 'hessian'``

modified_tol : float, optional
    Tolerance for modified LLE method.
    Only used if ``method == 'modified'``

neighbors_algorithm : string ['auto'|'brute'|'kd_tree'|'ball_tree']
    algorithm to use for nearest neighbors search,
    passed to neighbors.NearestNeighbors instance

random_state: numpy.RandomState or int, optional
    The generator or seed used to determine the starting vector for arpack
    iterations.  Defaults to numpy.random.

**Attributes**

``embedding_vectors_`` : array-like, shape [n_components, n_samples]
    Stores the embedding vectors

``reconstruction_error_`` : float
    Reconstruction error associated with `embedding_vectors_`

``nbrs_`` : NearestNeighbors object
    Stores nearest neighbors instance, including BallTree or KDtree
    if applicable.

**References**


.. [1] `Roweis, S. & Saul, L. Nonlinear dimensionality reduction
    by locally linear embedding.  Science 290:2323 (2000).`
.. [2] `Donoho, D. & Grimes, C. Hessian eigenmaps: Locally
    linear embedding techniques for high-dimensional data.
    Proc Natl Acad Sci U S A.  100:5591 (2003).`
.. [3] `Zhang, Z. & Wang, J. MLLE: Modified Locally Linear
    Embedding Using Multiple Weights.`
    http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382
.. [4] `Zhang, Z. & Zha, H. Principal manifolds and nonlinear
    dimensionality reduction via tangent space alignment.
    Journal of Shanghai Univ.  8:406 (2004)`

Overrides: object.__init__

_execute(self, x)

 
Overrides: Node._execute

_get_supported_dtypes(self)

 
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
Overrides: Node._get_supported_dtypes

_stop_training(self, **kwargs)

 
Concatenate the collected data in a single array.
Overrides: Node._stop_training

execute(self, x)

 

Transform new points into embedding space.

This node has been automatically generated by wrapping the sklearn.manifold.locally_linear.LocallyLinearEmbedding class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

Parameters

X : array-like, shape = [n_samples, n_features]

Returns

X_new : array, shape = [n_samples, n_components]

Notes

Because of scaling performed by this method, it is discouraged to use it together with methods that are not scale-invariant (like SVMs)

Overrides: Node.execute

is_invertible()
Static Method

 
Return True if the node can be inverted, False otherwise.
Overrides: Node.is_invertible
(inherited documentation)

is_trainable()
Static Method

 
Return True if the node can be trained, False otherwise.
Overrides: Node.is_trainable

stop_training(self, **kwargs)

 

Compute the embedding vectors for data X

This node has been automatically generated by wrapping the sklearn.manifold.locally_linear.LocallyLinearEmbedding class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

Parameters

X : array-like of shape [n_samples, n_features]
training set.

Returns

self : returns an instance of self.

Overrides: Node.stop_training