Package mdp :: Package nodes :: Class MaxAbsScalerScikitsLearnNode
[hide private]
[frames] | no frames]

Class MaxAbsScalerScikitsLearnNode



Scale each feature by its maximum absolute value.

This node has been automatically generated by wrapping the ``sklearn.preprocessing.data.MaxAbsScaler`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

This estimator scales and translates each feature individually such
that the maximal absolute value of each feature in the
training set will be 1.0. It does not shift/center the data, and
thus does not destroy any sparsity.

This scaler can also be applied to sparse CSR or CSC matrices.

.. versionadded:: 0.17

**Parameters**

copy : boolean, optional, default is True
    Set to False to perform inplace scaling and avoid a copy (if the input
    is already a numpy array).

**Attributes**

``scale_`` : ndarray, shape (n_features,)
    Per feature relative scaling of the data.

    .. versionadded:: 0.17
       *scale_* attribute.

``max_abs_`` : ndarray, shape (n_features,)
    Per feature maximum absolute value.

``n_samples_seen_`` : int
    The number of samples processed by the estimator. Will be reset on
    new calls to fit, but increments across ``partial_fit`` calls.

Instance Methods [hide private]
 
__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
Scale each feature by its maximum absolute value.
 
_execute(self, x)
 
_get_supported_dtypes(self)
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
 
_stop_training(self, **kwargs)
Concatenate the collected data in a single array.
 
execute(self, x)
Scale the data
 
stop_training(self, **kwargs)
Compute the maximum absolute value to be used for later scaling.

Inherited from unreachable.newobject: __long__, __native__, __nonzero__, __unicode__, next

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

    Inherited from Cumulator
 
_train(self, *args)
Collect all input data in a list.
 
train(self, *args)
Collect all input data in a list.
    Inherited from Node
 
__add__(self, other)
 
__call__(self, x, *args, **kwargs)
Calling an instance of Node is equivalent to calling its execute method.
 
__repr__(self)
repr(x)
 
__str__(self)
str(x)
 
_check_input(self, x)
 
_check_output(self, y)
 
_check_train_args(self, x, *args, **kwargs)
 
_get_train_seq(self)
 
_if_training_stop_training(self)
 
_inverse(self, x)
 
_pre_execution_checks(self, x)
This method contains all pre-execution checks.
 
_pre_inversion_checks(self, y)
This method contains all pre-inversion checks.
 
_refcast(self, x)
Helper function to cast arrays to the internal dtype.
 
_set_dtype(self, t)
 
_set_input_dim(self, n)
 
_set_output_dim(self, n)
 
copy(self, protocol=None)
Return a deep copy of the node.
 
get_current_train_phase(self)
Return the index of the current training phase.
 
get_dtype(self)
Return dtype.
 
get_input_dim(self)
Return input dimensions.
 
get_output_dim(self)
Return output dimensions.
 
get_remaining_train_phase(self)
Return the number of training phases still to accomplish.
 
get_supported_dtypes(self)
Return dtypes supported by the node as a list of dtype objects.
 
has_multiple_training_phases(self)
Return True if the node has multiple training phases.
 
inverse(self, y, *args, **kwargs)
Invert y.
 
is_training(self)
Return True if the node is in the training phase, False otherwise.
 
save(self, filename, protocol=-1)
Save a pickled serialization of the node to filename. If filename is None, return a string.
 
set_dtype(self, t)
Set internal structures' dtype.
 
set_input_dim(self, n)
Set input dimensions.
 
set_output_dim(self, n)
Set output dimensions.
Static Methods [hide private]
 
is_invertible()
Return True if the node can be inverted, False otherwise.
 
is_trainable()
Return True if the node can be trained, False otherwise.
Properties [hide private]

Inherited from object: __class__

    Inherited from Node
  _train_seq
List of tuples:
  dtype
dtype
  input_dim
Input dimensions
  output_dim
Output dimensions
  supported_dtypes
Supported dtypes
Method Details [hide private]

__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
(Constructor)

 

Scale each feature by its maximum absolute value.

This node has been automatically generated by wrapping the ``sklearn.preprocessing.data.MaxAbsScaler`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

This estimator scales and translates each feature individually such
that the maximal absolute value of each feature in the
training set will be 1.0. It does not shift/center the data, and
thus does not destroy any sparsity.

This scaler can also be applied to sparse CSR or CSC matrices.

.. versionadded:: 0.17

**Parameters**

copy : boolean, optional, default is True
    Set to False to perform inplace scaling and avoid a copy (if the input
    is already a numpy array).

**Attributes**

``scale_`` : ndarray, shape (n_features,)
    Per feature relative scaling of the data.

    .. versionadded:: 0.17
       *scale_* attribute.

``max_abs_`` : ndarray, shape (n_features,)
    Per feature maximum absolute value.

``n_samples_seen_`` : int
    The number of samples processed by the estimator. Will be reset on
    new calls to fit, but increments across ``partial_fit`` calls.

Overrides: object.__init__

_execute(self, x)

 
Overrides: Node._execute

_get_supported_dtypes(self)

 
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
Overrides: Node._get_supported_dtypes

_stop_training(self, **kwargs)

 
Concatenate the collected data in a single array.
Overrides: Node._stop_training

execute(self, x)

 

Scale the data

This node has been automatically generated by wrapping the sklearn.preprocessing.data.MaxAbsScaler class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

Parameters

X : {array-like, sparse matrix}
The data that should be scaled.
Overrides: Node.execute

is_invertible()
Static Method

 
Return True if the node can be inverted, False otherwise.
Overrides: Node.is_invertible
(inherited documentation)

is_trainable()
Static Method

 
Return True if the node can be trained, False otherwise.
Overrides: Node.is_trainable

stop_training(self, **kwargs)

 

Compute the maximum absolute value to be used for later scaling.

This node has been automatically generated by wrapping the sklearn.preprocessing.data.MaxAbsScaler class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

Parameters

X : {array-like, sparse matrix}, shape [n_samples, n_features]
The data used to compute the per-feature minimum and maximum used for later scaling along the features axis.
Overrides: Node.stop_training