Package mdp :: Package nodes :: Class MiniBatchSparsePCAScikitsLearnNode
[hide private]
[frames] | no frames]

Class MiniBatchSparsePCAScikitsLearnNode



Mini-batch Sparse Principal Components Analysis

This node has been automatically generated by wrapping the ``sklearn.decomposition.sparse_pca.MiniBatchSparsePCA`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

Finds the set of sparse components that can optimally reconstruct
the data.  The amount of sparseness is controllable by the coefficient
of the L1 penalty, given by the parameter alpha.

Read more in the :ref:`User Guide <SparsePCA>`.

**Parameters**

n_components : int,
    number of sparse atoms to extract

alpha : int,
    Sparsity controlling parameter. Higher values lead to sparser
    components.

ridge_alpha : float,
    Amount of ridge shrinkage to apply in order to improve
    conditioning when calling the transform method.

n_iter : int,
    number of iterations to perform for each mini batch

callback : callable,
    callable that gets invoked every five iterations

batch_size : int,
    the number of features to take in each mini batch

verbose :

    - degree of output the procedure will print


shuffle : boolean,
    whether to shuffle the data before splitting it in batches

n_jobs : int,
    number of parallel jobs to run, or -1 to autodetect.

method : {'lars', 'cd'}
    lars: uses the least angle regression method to solve the lasso problem
    (linear_model.lars_path)
    cd: uses the coordinate descent method to compute the
    Lasso solution (linear_model.Lasso). Lars will be faster if
    the estimated components are sparse.

random_state : int or RandomState
    Pseudo number generator state used for random sampling.

**Attributes**

``components_`` : array, [n_components, n_features]
    Sparse components extracted from the data.

``error_`` : array
    Vector of errors at each iteration.

``n_iter_`` : int
    Number of iterations run.

See also

PCA
SparsePCA
DictionaryLearning

Instance Methods [hide private]
 
__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
Mini-batch Sparse Principal Components Analysis
 
_execute(self, x)
 
_get_supported_dtypes(self)
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
 
_stop_training(self, **kwargs)
Concatenate the collected data in a single array.
 
execute(self, x)
Least Squares projection of the data onto the sparse components.
 
stop_training(self, **kwargs)
Fit the model from data in X.

Inherited from unreachable.newobject: __long__, __native__, __nonzero__, __unicode__, next

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

    Inherited from Cumulator
 
_train(self, *args)
Collect all input data in a list.
 
train(self, *args)
Collect all input data in a list.
    Inherited from Node
 
__add__(self, other)
 
__call__(self, x, *args, **kwargs)
Calling an instance of Node is equivalent to calling its execute method.
 
__repr__(self)
repr(x)
 
__str__(self)
str(x)
 
_check_input(self, x)
 
_check_output(self, y)
 
_check_train_args(self, x, *args, **kwargs)
 
_get_train_seq(self)
 
_if_training_stop_training(self)
 
_inverse(self, x)
 
_pre_execution_checks(self, x)
This method contains all pre-execution checks.
 
_pre_inversion_checks(self, y)
This method contains all pre-inversion checks.
 
_refcast(self, x)
Helper function to cast arrays to the internal dtype.
 
_set_dtype(self, t)
 
_set_input_dim(self, n)
 
_set_output_dim(self, n)
 
copy(self, protocol=None)
Return a deep copy of the node.
 
get_current_train_phase(self)
Return the index of the current training phase.
 
get_dtype(self)
Return dtype.
 
get_input_dim(self)
Return input dimensions.
 
get_output_dim(self)
Return output dimensions.
 
get_remaining_train_phase(self)
Return the number of training phases still to accomplish.
 
get_supported_dtypes(self)
Return dtypes supported by the node as a list of dtype objects.
 
has_multiple_training_phases(self)
Return True if the node has multiple training phases.
 
inverse(self, y, *args, **kwargs)
Invert y.
 
is_training(self)
Return True if the node is in the training phase, False otherwise.
 
save(self, filename, protocol=-1)
Save a pickled serialization of the node to filename. If filename is None, return a string.
 
set_dtype(self, t)
Set internal structures' dtype.
 
set_input_dim(self, n)
Set input dimensions.
 
set_output_dim(self, n)
Set output dimensions.
Static Methods [hide private]
 
is_invertible()
Return True if the node can be inverted, False otherwise.
 
is_trainable()
Return True if the node can be trained, False otherwise.
Properties [hide private]

Inherited from object: __class__

    Inherited from Node
  _train_seq
List of tuples:
  dtype
dtype
  input_dim
Input dimensions
  output_dim
Output dimensions
  supported_dtypes
Supported dtypes
Method Details [hide private]

__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
(Constructor)

 

Mini-batch Sparse Principal Components Analysis

This node has been automatically generated by wrapping the ``sklearn.decomposition.sparse_pca.MiniBatchSparsePCA`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

Finds the set of sparse components that can optimally reconstruct
the data.  The amount of sparseness is controllable by the coefficient
of the L1 penalty, given by the parameter alpha.

Read more in the :ref:`User Guide <SparsePCA>`.

**Parameters**

n_components : int,
    number of sparse atoms to extract

alpha : int,
    Sparsity controlling parameter. Higher values lead to sparser
    components.

ridge_alpha : float,
    Amount of ridge shrinkage to apply in order to improve
    conditioning when calling the transform method.

n_iter : int,
    number of iterations to perform for each mini batch

callback : callable,
    callable that gets invoked every five iterations

batch_size : int,
    the number of features to take in each mini batch

verbose :

    - degree of output the procedure will print


shuffle : boolean,
    whether to shuffle the data before splitting it in batches

n_jobs : int,
    number of parallel jobs to run, or -1 to autodetect.

method : {'lars', 'cd'}
    lars: uses the least angle regression method to solve the lasso problem
    (linear_model.lars_path)
    cd: uses the coordinate descent method to compute the
    Lasso solution (linear_model.Lasso). Lars will be faster if
    the estimated components are sparse.

random_state : int or RandomState
    Pseudo number generator state used for random sampling.

**Attributes**

``components_`` : array, [n_components, n_features]
    Sparse components extracted from the data.

``error_`` : array
    Vector of errors at each iteration.

``n_iter_`` : int
    Number of iterations run.

See also

PCA
SparsePCA
DictionaryLearning

Overrides: object.__init__

_execute(self, x)

 
Overrides: Node._execute

_get_supported_dtypes(self)

 
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
Overrides: Node._get_supported_dtypes

_stop_training(self, **kwargs)

 
Concatenate the collected data in a single array.
Overrides: Node._stop_training

execute(self, x)

 

Least Squares projection of the data onto the sparse components.

This node has been automatically generated by wrapping the sklearn.decomposition.sparse_pca.MiniBatchSparsePCA class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

To avoid instability issues in case the system is under-determined, regularization can be applied (Ridge regression) via the ridge_alpha parameter.

Note that Sparse PCA components orthogonality is not enforced as in PCA hence one cannot use a simple linear projection.

Parameters

X: array of shape (n_samples, n_features)
Test data to be transformed, must have the same number of features as the data used to train the model.
ridge_alpha: float, default: 0.01
Amount of ridge shrinkage to apply in order to improve conditioning.

Returns

X_new array, shape (n_samples, n_components)
Transformed data.
Overrides: Node.execute

is_invertible()
Static Method

 
Return True if the node can be inverted, False otherwise.
Overrides: Node.is_invertible
(inherited documentation)

is_trainable()
Static Method

 
Return True if the node can be trained, False otherwise.
Overrides: Node.is_trainable

stop_training(self, **kwargs)

 

Fit the model from data in X.

This node has been automatically generated by wrapping the sklearn.decomposition.sparse_pca.MiniBatchSparsePCA class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

Parameters

X: array-like, shape (n_samples, n_features)
Training vector, where n_samples in the number of samples and n_features is the number of features.

Returns

self : object
Returns the instance itself.
Overrides: Node.stop_training