Package mdp :: Package nodes :: Class NormalizerScikitsLearnNode
[hide private]
[frames] | no frames]

Class NormalizerScikitsLearnNode



Normalize samples individually to unit norm.

This node has been automatically generated by wrapping the ``sklearn.preprocessing.data.Normalizer`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

Each sample (i.e. each row of the data matrix) with at least one
non zero component is rescaled independently of other samples so
that its norm (l1 or l2) equals one.

This transformer is able to work both with dense numpy arrays and
scipy.sparse matrix (use CSR format if you want to avoid the burden of
a copy / conversion).

Scaling inputs to unit norms is a common operation for text
classification or clustering for instance. For instance the dot
product of two l2-normalized TF-IDF vectors is the cosine similarity
of the vectors and is the base similarity metric for the Vector
Space Model commonly used by the Information Retrieval community.

Read more in the :ref:`User Guide <preprocessing_normalization>`.

**Parameters**

norm : 'l1', 'l2', or 'max', optional ('l2' by default)
    The norm to use to normalize each non zero sample.

copy : boolean, optional, default True
    set to False to perform inplace row normalization and avoid a
    copy (if the input is already a numpy array or a scipy.sparse
    CSR matrix).

**Notes**

This estimator is stateless (besides constructor parameters), the
fit method does nothing but is useful when used in a pipeline.

See also

:func:`sklearn.preprocessing.normalize` equivalent function
without the object oriented API

Instance Methods [hide private]
 
__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
Normalize samples individually to unit norm.
 
_execute(self, x)
 
_get_supported_dtypes(self)
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
 
_stop_training(self, **kwargs)
Concatenate the collected data in a single array.
 
execute(self, x)
Scale each non zero row of X to unit norm
 
stop_training(self, **kwargs)
Do nothing and return the estimator unchanged

Inherited from unreachable.newobject: __long__, __native__, __nonzero__, __unicode__, next

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

    Inherited from Cumulator
 
_train(self, *args)
Collect all input data in a list.
 
train(self, *args)
Collect all input data in a list.
    Inherited from Node
 
__add__(self, other)
 
__call__(self, x, *args, **kwargs)
Calling an instance of Node is equivalent to calling its execute method.
 
__repr__(self)
repr(x)
 
__str__(self)
str(x)
 
_check_input(self, x)
 
_check_output(self, y)
 
_check_train_args(self, x, *args, **kwargs)
 
_get_train_seq(self)
 
_if_training_stop_training(self)
 
_inverse(self, x)
 
_pre_execution_checks(self, x)
This method contains all pre-execution checks.
 
_pre_inversion_checks(self, y)
This method contains all pre-inversion checks.
 
_refcast(self, x)
Helper function to cast arrays to the internal dtype.
 
_set_dtype(self, t)
 
_set_input_dim(self, n)
 
_set_output_dim(self, n)
 
copy(self, protocol=None)
Return a deep copy of the node.
 
get_current_train_phase(self)
Return the index of the current training phase.
 
get_dtype(self)
Return dtype.
 
get_input_dim(self)
Return input dimensions.
 
get_output_dim(self)
Return output dimensions.
 
get_remaining_train_phase(self)
Return the number of training phases still to accomplish.
 
get_supported_dtypes(self)
Return dtypes supported by the node as a list of dtype objects.
 
has_multiple_training_phases(self)
Return True if the node has multiple training phases.
 
inverse(self, y, *args, **kwargs)
Invert y.
 
is_training(self)
Return True if the node is in the training phase, False otherwise.
 
save(self, filename, protocol=-1)
Save a pickled serialization of the node to filename. If filename is None, return a string.
 
set_dtype(self, t)
Set internal structures' dtype.
 
set_input_dim(self, n)
Set input dimensions.
 
set_output_dim(self, n)
Set output dimensions.
Static Methods [hide private]
 
is_invertible()
Return True if the node can be inverted, False otherwise.
 
is_trainable()
Return True if the node can be trained, False otherwise.
Properties [hide private]

Inherited from object: __class__

    Inherited from Node
  _train_seq
List of tuples:
  dtype
dtype
  input_dim
Input dimensions
  output_dim
Output dimensions
  supported_dtypes
Supported dtypes
Method Details [hide private]

__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
(Constructor)

 

Normalize samples individually to unit norm.

This node has been automatically generated by wrapping the ``sklearn.preprocessing.data.Normalizer`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

Each sample (i.e. each row of the data matrix) with at least one
non zero component is rescaled independently of other samples so
that its norm (l1 or l2) equals one.

This transformer is able to work both with dense numpy arrays and
scipy.sparse matrix (use CSR format if you want to avoid the burden of
a copy / conversion).

Scaling inputs to unit norms is a common operation for text
classification or clustering for instance. For instance the dot
product of two l2-normalized TF-IDF vectors is the cosine similarity
of the vectors and is the base similarity metric for the Vector
Space Model commonly used by the Information Retrieval community.

Read more in the :ref:`User Guide <preprocessing_normalization>`.

**Parameters**

norm : 'l1', 'l2', or 'max', optional ('l2' by default)
    The norm to use to normalize each non zero sample.

copy : boolean, optional, default True
    set to False to perform inplace row normalization and avoid a
    copy (if the input is already a numpy array or a scipy.sparse
    CSR matrix).

**Notes**

This estimator is stateless (besides constructor parameters), the
fit method does nothing but is useful when used in a pipeline.

See also

:func:`sklearn.preprocessing.normalize` equivalent function
without the object oriented API

Overrides: object.__init__

_execute(self, x)

 
Overrides: Node._execute

_get_supported_dtypes(self)

 
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
Overrides: Node._get_supported_dtypes

_stop_training(self, **kwargs)

 
Concatenate the collected data in a single array.
Overrides: Node._stop_training

execute(self, x)

 

Scale each non zero row of X to unit norm

This node has been automatically generated by wrapping the sklearn.preprocessing.data.Normalizer class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

Parameters

X : {array-like, sparse matrix}, shape [n_samples, n_features]
The data to normalize, row by row. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy.
Overrides: Node.execute

is_invertible()
Static Method

 
Return True if the node can be inverted, False otherwise.
Overrides: Node.is_invertible
(inherited documentation)

is_trainable()
Static Method

 
Return True if the node can be trained, False otherwise.
Overrides: Node.is_trainable

stop_training(self, **kwargs)

 

Do nothing and return the estimator unchanged

This node has been automatically generated by wrapping the sklearn.preprocessing.data.Normalizer class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

This method is just there to implement the usual API and hence work in pipelines.

Overrides: Node.stop_training