Package mdp :: Package nodes :: Class NystroemScikitsLearnNode
[hide private]
[frames] | no frames]

Class NystroemScikitsLearnNode



Approximate a kernel map using a subset of the training data.

This node has been automatically generated by wrapping the ``sklearn.kernel_approximation.Nystroem`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

Constructs an approximate feature map for an arbitrary kernel
using a subset of the data as basis.

Read more in the :ref:`User Guide <nystroem_kernel_approx>`.

**Parameters**

kernel : string or callable, default="rbf"
    Kernel map to be approximated. A callable should accept two arguments
    and the keyword arguments passed to this object as kernel_params, and
    should return a floating point number.

n_components : int
    Number of features to construct.
    How many data points will be used to construct the mapping.

gamma : float, default=None
    Gamma parameter for the RBF, polynomial, exponential chi2 and
    sigmoid kernels. Interpretation of the default value is left to
    the kernel; see the documentation for sklearn.metrics.pairwise.
    Ignored by other kernels.

degree : float, default=3
    Degree of the polynomial kernel. Ignored by other kernels.

coef0 : float, default=1
    Zero coefficient for polynomial and sigmoid kernels.
    Ignored by other kernels.

kernel_params : mapping of string to any, optional
    Additional parameters (keyword arguments) for kernel function passed
    as callable object.

random_state : {int, RandomState}, optional
    If int, random_state is the seed used by the random number generator;
    if RandomState instance, random_state is the random number generator.


**Attributes**

``components_`` : array, shape (n_components, n_features)
    Subset of training points used to construct the feature map.

``component_indices_`` : array, shape (n_components)
    Indices of ``components_`` in the training set.

``normalization_`` : array, shape (n_components, n_components)
    Normalization matrix needed for embedding.
    Square root of the kernel matrix on ``components_``.


**References**

* Williams, C.K.I. and Seeger, M.
  "Using the Nystroem method to speed up kernel machines",
  Advances in neural information processing systems 2001

* T. Yang, Y. Li, M. Mahdavi, R. Jin and Z. Zhou
  "Nystroem Method vs Random Fourier Features: A Theoretical and Empirical
  Comparison",
  Advances in Neural Information Processing Systems 2012


See also

RBFSampler : An approximation to the RBF kernel using random Fourier
             features.

sklearn.metrics.pairwise.kernel_metrics : List of built-in kernels.

Instance Methods [hide private]
 
__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
Approximate a kernel map using a subset of the training data.
 
_execute(self, x)
 
_get_supported_dtypes(self)
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
 
_stop_training(self, **kwargs)
Concatenate the collected data in a single array.
 
execute(self, x)
Apply feature map to X.
 
stop_training(self, **kwargs)
Fit estimator to data.

Inherited from unreachable.newobject: __long__, __native__, __nonzero__, __unicode__, next

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

    Inherited from Cumulator
 
_train(self, *args)
Collect all input data in a list.
 
train(self, *args)
Collect all input data in a list.
    Inherited from Node
 
__add__(self, other)
 
__call__(self, x, *args, **kwargs)
Calling an instance of Node is equivalent to calling its execute method.
 
__repr__(self)
repr(x)
 
__str__(self)
str(x)
 
_check_input(self, x)
 
_check_output(self, y)
 
_check_train_args(self, x, *args, **kwargs)
 
_get_train_seq(self)
 
_if_training_stop_training(self)
 
_inverse(self, x)
 
_pre_execution_checks(self, x)
This method contains all pre-execution checks.
 
_pre_inversion_checks(self, y)
This method contains all pre-inversion checks.
 
_refcast(self, x)
Helper function to cast arrays to the internal dtype.
 
_set_dtype(self, t)
 
_set_input_dim(self, n)
 
_set_output_dim(self, n)
 
copy(self, protocol=None)
Return a deep copy of the node.
 
get_current_train_phase(self)
Return the index of the current training phase.
 
get_dtype(self)
Return dtype.
 
get_input_dim(self)
Return input dimensions.
 
get_output_dim(self)
Return output dimensions.
 
get_remaining_train_phase(self)
Return the number of training phases still to accomplish.
 
get_supported_dtypes(self)
Return dtypes supported by the node as a list of dtype objects.
 
has_multiple_training_phases(self)
Return True if the node has multiple training phases.
 
inverse(self, y, *args, **kwargs)
Invert y.
 
is_training(self)
Return True if the node is in the training phase, False otherwise.
 
save(self, filename, protocol=-1)
Save a pickled serialization of the node to filename. If filename is None, return a string.
 
set_dtype(self, t)
Set internal structures' dtype.
 
set_input_dim(self, n)
Set input dimensions.
 
set_output_dim(self, n)
Set output dimensions.
Static Methods [hide private]
 
is_invertible()
Return True if the node can be inverted, False otherwise.
 
is_trainable()
Return True if the node can be trained, False otherwise.
Properties [hide private]

Inherited from object: __class__

    Inherited from Node
  _train_seq
List of tuples:
  dtype
dtype
  input_dim
Input dimensions
  output_dim
Output dimensions
  supported_dtypes
Supported dtypes
Method Details [hide private]

__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
(Constructor)

 

Approximate a kernel map using a subset of the training data.

This node has been automatically generated by wrapping the ``sklearn.kernel_approximation.Nystroem`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

Constructs an approximate feature map for an arbitrary kernel
using a subset of the data as basis.

Read more in the :ref:`User Guide <nystroem_kernel_approx>`.

**Parameters**

kernel : string or callable, default="rbf"
    Kernel map to be approximated. A callable should accept two arguments
    and the keyword arguments passed to this object as kernel_params, and
    should return a floating point number.

n_components : int
    Number of features to construct.
    How many data points will be used to construct the mapping.

gamma : float, default=None
    Gamma parameter for the RBF, polynomial, exponential chi2 and
    sigmoid kernels. Interpretation of the default value is left to
    the kernel; see the documentation for sklearn.metrics.pairwise.
    Ignored by other kernels.

degree : float, default=3
    Degree of the polynomial kernel. Ignored by other kernels.

coef0 : float, default=1
    Zero coefficient for polynomial and sigmoid kernels.
    Ignored by other kernels.

kernel_params : mapping of string to any, optional
    Additional parameters (keyword arguments) for kernel function passed
    as callable object.

random_state : {int, RandomState}, optional
    If int, random_state is the seed used by the random number generator;
    if RandomState instance, random_state is the random number generator.


**Attributes**

``components_`` : array, shape (n_components, n_features)
    Subset of training points used to construct the feature map.

``component_indices_`` : array, shape (n_components)
    Indices of ``components_`` in the training set.

``normalization_`` : array, shape (n_components, n_components)
    Normalization matrix needed for embedding.
    Square root of the kernel matrix on ``components_``.


**References**

* Williams, C.K.I. and Seeger, M.
  "Using the Nystroem method to speed up kernel machines",
  Advances in neural information processing systems 2001

* T. Yang, Y. Li, M. Mahdavi, R. Jin and Z. Zhou
  "Nystroem Method vs Random Fourier Features: A Theoretical and Empirical
  Comparison",
  Advances in Neural Information Processing Systems 2012


See also

RBFSampler : An approximation to the RBF kernel using random Fourier
             features.

sklearn.metrics.pairwise.kernel_metrics : List of built-in kernels.

Overrides: object.__init__

_execute(self, x)

 
Overrides: Node._execute

_get_supported_dtypes(self)

 
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
Overrides: Node._get_supported_dtypes

_stop_training(self, **kwargs)

 
Concatenate the collected data in a single array.
Overrides: Node._stop_training

execute(self, x)

 

Apply feature map to X.

This node has been automatically generated by wrapping the sklearn.kernel_approximation.Nystroem class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

Computes an approximate feature map using the kernel between some training points and X.

Parameters

X : array-like, shape=(n_samples, n_features)
Data to transform.

Returns

X_transformed : array, shape=(n_samples, n_components)
Transformed data.
Overrides: Node.execute

is_invertible()
Static Method

 
Return True if the node can be inverted, False otherwise.
Overrides: Node.is_invertible
(inherited documentation)

is_trainable()
Static Method

 
Return True if the node can be trained, False otherwise.
Overrides: Node.is_trainable

stop_training(self, **kwargs)

 

Fit estimator to data.

This node has been automatically generated by wrapping the sklearn.kernel_approximation.Nystroem class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

Samples a subset of training points, computes kernel on these and computes normalization matrix.

Parameters

X : array-like, shape=(n_samples, n_feature)
Training data.
Overrides: Node.stop_training