Package mdp :: Package nodes :: Class RBMWithLabelsNode
[hide private]
[frames] | no frames]

Class RBMWithLabelsNode


Restricted Boltzmann Machine with softmax labels. An RBM is an undirected probabilistic network with binary variables. In this case, the node is partitioned into a set of observed (visible) variables, a set of hidden (latent) variables, and a set of label variables (also observed), only one of which is active at any time. The node is able to learn associations between the visible variables and the labels.

By default, the execute method returns the probability of one of the hiden variables being equal to 1 given the input.

Use the sample_v method to sample from the observed variables (visible and labels) given a setting of the hidden variables, and sample_h to do the opposite. The energy method can be used to compute the energy of a given setting of all variables.

The network is trained by Contrastive Divergence, as described in Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8):1711-1800

Internal variables of interest:

self.w
Generative weights between hidden and observed variables
self.bv
bias vector of the observed variables
self.bh
bias vector of the hidden variables

For more information on RBMs with labels, see

Instance Methods [hide private]
 
__init__(self, hidden_dim, labels_dim, visible_dim=None, dtype=None)
If the input dimension and the output dimension are unspecified, they will be set when the train or execute method is called for the first time. If dtype is unspecified, it will be inherited from the data it receives at the first call of train or execute.
 
_sample_v(self, h, sample_l=False, concatenate=True)
 
_set_input_dim(self, n)
 
energy(self, v, h, l)
Compute the energy of the RBM given observed variables state v and l, and hidden variables state h.
 
execute(self, v, l, return_probs=True)
If return_probs is True, returns the probability of the hidden variables h[n,i] being 1 given the observations v[n,:] and l[n,:]. If return_probs is False, return a sample from that probability.
 
sample_h(self, v, l)
Sample the hidden variables given observations v and labels l.
 
sample_v(self, h)
Sample the observed variables given hidden variable state h.
 
train(self, v, l, n_updates=1, epsilon=0.1, decay=0.0, momentum=0.0, verbose=False)
Update the internal structures according to the visible data v and the labels l. The training is performed using Contrastive Divergence (CD).

Inherited from unreachable.newobject: __long__, __native__, __nonzero__, __unicode__, next

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

    Inherited from RBMNode
 
_energy(self, v, h)
 
_execute(self, v, return_probs=True)
If return_probs is True, returns the probability of the hidden variables h[n,i] being 1 given the observations v[n,:]. If return_probs is False, return a sample from that probability.
 
_init_weights(self)
 
_pre_inversion_checks(self, y)
This method contains all pre-inversion checks.
 
_sample_h(self, v)
 
_stop_training(self)
 
_train(self, v, n_updates=1, epsilon=0.1, decay=0.0, momentum=0.0, update_with_ph=True, verbose=False)
Update the internal structures according to the input data v. The training is performed using Contrastive Divergence (CD).
 
stop_training(self)
Stop the training phase.
    Inherited from Node
 
__add__(self, other)
 
__call__(self, x, *args, **kwargs)
Calling an instance of Node is equivalent to calling its execute method.
 
__repr__(self)
repr(x)
 
__str__(self)
str(x)
 
_check_input(self, x)
 
_check_output(self, y)
 
_check_train_args(self, x, *args, **kwargs)
 
_get_supported_dtypes(self)
Return the list of dtypes supported by this node.
 
_get_train_seq(self)
 
_if_training_stop_training(self)
 
_inverse(self, x)
 
_pre_execution_checks(self, x)
This method contains all pre-execution checks.
 
_refcast(self, x)
Helper function to cast arrays to the internal dtype.
 
_set_dtype(self, t)
 
_set_output_dim(self, n)
 
copy(self, protocol=None)
Return a deep copy of the node.
 
get_current_train_phase(self)
Return the index of the current training phase.
 
get_dtype(self)
Return dtype.
 
get_input_dim(self)
Return input dimensions.
 
get_output_dim(self)
Return output dimensions.
 
get_remaining_train_phase(self)
Return the number of training phases still to accomplish.
 
get_supported_dtypes(self)
Return dtypes supported by the node as a list of dtype objects.
 
has_multiple_training_phases(self)
Return True if the node has multiple training phases.
 
inverse(self, y, *args, **kwargs)
Invert y.
 
is_training(self)
Return True if the node is in the training phase, False otherwise.
 
save(self, filename, protocol=-1)
Save a pickled serialization of the node to filename. If filename is None, return a string.
 
set_dtype(self, t)
Set internal structures' dtype.
 
set_input_dim(self, n)
Set input dimensions.
 
set_output_dim(self, n)
Set output dimensions.
Static Methods [hide private]
 
is_invertible()
Return True if the node can be inverted, False otherwise.
    Inherited from Node
 
is_trainable()
Return True if the node can be trained, False otherwise.
Properties [hide private]

Inherited from object: __class__

    Inherited from Node
  _train_seq
List of tuples:
  dtype
dtype
  input_dim
Input dimensions
  output_dim
Output dimensions
  supported_dtypes
Supported dtypes
Method Details [hide private]

__init__(self, hidden_dim, labels_dim, visible_dim=None, dtype=None)
(Constructor)

 

If the input dimension and the output dimension are unspecified, they will be set when the train or execute method is called for the first time. If dtype is unspecified, it will be inherited from the data it receives at the first call of train or execute.

Every subclass must take care of up- or down-casting the internal structures to match this argument (use _refcast private method when possible).

Parameters:
  • hidden_dim - number of hidden variables
  • visible_dim - number of observed variables
Overrides: object.__init__
(inherited documentation)

_sample_v(self, h, sample_l=False, concatenate=True)

 
Overrides: RBMNode._sample_v

_set_input_dim(self, n)

 
Overrides: Node._set_input_dim

energy(self, v, h, l)

 
Compute the energy of the RBM given observed variables state v and l, and hidden variables state h.
Overrides: RBMNode.energy

execute(self, v, l, return_probs=True)

 
If return_probs is True, returns the probability of the hidden variables h[n,i] being 1 given the observations v[n,:] and l[n,:]. If return_probs is False, return a sample from that probability.
Overrides: Node.execute

is_invertible()
Static Method

 
Return True if the node can be inverted, False otherwise.
Overrides: Node.is_invertible
(inherited documentation)

sample_h(self, v, l)

 
Sample the hidden variables given observations v and labels l.
Returns:
a tuple (prob_h, h), where prob_h[n,i] is the probability that variable i is one given the observations v[n,:] and the labels l[n,:], and h[n,i] is a sample from the posterior probability.
Overrides: RBMNode.sample_h

sample_v(self, h)

 
Sample the observed variables given hidden variable state h.
Returns:
a tuple (prob_v, probs_l, v, l), where prob_v[n,i] is the probability that the visible variable i is one given the hidden variables h[n,:], and v[n,i] is a sample from that conditional probability. prob_l and l have similar interpretations for the label variables. Note that the labels are activated using a softmax function, so that only one label can be active at any time.
Overrides: RBMNode.sample_v

train(self, v, l, n_updates=1, epsilon=0.1, decay=0.0, momentum=0.0, verbose=False)

 
Update the internal structures according to the visible data v and the labels l. The training is performed using Contrastive Divergence (CD).
Parameters:
  • v - a binary matrix having different variables on different columns and observations on the rows
  • l - a binary matrix having different variables on different columns and observations on the rows. Only one value per row should be 1.
  • n_updates - number of CD iterations. Default value: 1
  • epsilon - learning rate. Default value: 0.1
  • decay - weight decay term. Default value: 0.
  • momentum - momentum term. Default value: 0.
Overrides: Node.train