Home | Trees | Indices | Help |
|
---|
|
Feature ranking with recursive feature elimination and cross-validated selection of the best number of features. This node has been automatically generated by wrapping the ``sklearn.feature_selection.rfe.RFECV`` class from the ``sklearn`` library. The wrapped instance can be accessed through the ``scikits_alg`` attribute. Read more in the :ref:`User Guide <rfe>`. **Parameters** estimator : object A supervised learning estimator with a `fit` method that updates a `coef_` attribute that holds the fitted parameters. Important features must correspond to high absolute values in the `coef_` array. For instance, this is the case for most supervised learning algorithms such as Support Vector Classifiers and Generalized Linear Models from the `svm` and `linear_model` modules. step : int or float, optional (default=1) If greater than or equal to 1, then `step` corresponds to the (integer) number of features to remove at each iteration. If within (0.0, 1.0), then `step` corresponds to the percentage (rounded down) of features to remove at each iteration. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if ``y`` is binary or multiclass, :class:`StratifiedKFold` used. If the estimator is a classifier or if ``y`` is neither binary nor multiclass, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. estimator_params : dict Parameters for the external estimator. This attribute is deprecated as of version 0.16 and will be removed in 0.18. Use estimator initialisation or set_params method instead. verbose : int, default=0 Controls verbosity of output. **Attributes** ``n_features_`` : int The number of selected features with cross-validation. ``support_`` : array of shape [n_features] The mask of selected features. ``ranking_`` : array of shape [n_features] The feature ranking, such that `ranking_[i]` corresponds to the ranking position of the i-th feature. Selected (i.e., estimated best) features are assigned rank 1. ``grid_scores_`` : array of shape [n_subsets_of_features] The cross-validation scores such that ``grid_scores_[i]`` corresponds to the CV score of the i-th subset of features. ``estimator_`` : object The external estimator fit on the reduced dataset. **Notes** The size of ``grid_scores_`` is equal to ceil((n_features - 1) / step) + 1, where step is the number of features removed at each iteration. **Examples** The following example shows how to retrieve the a-priori not known 5 informative features in the Friedman #1 dataset. >>> from sklearn.datasets import make_friedman1 >>> from sklearn.feature_selection import RFECV >>> from sklearn.svm import SVR >>> X, y = make_friedman1(n_samples=50, n_features=10, random_state=0) >>> estimator = SVR(kernel="linear") >>> selector = RFECV(estimator, step=1, cv=5) >>> selector = selector.fit(X, y) >>> selector.support_ # doctest: +NORMALIZE_WHITESPACE array([ True, True, True, True, True, False, False, False, False, False], dtype=bool) >>> selector.ranking_ array([1, 1, 1, 1, 1, 6, 4, 3, 2, 5]) **References** .. [1] Guyon, I., Weston, J., Barnhill, S., & Vapnik, V., "Gene selection for cancer classification using support vector machines", Mach. Learn., 46(1-3), 389--422, 2002.
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
Inherited from Inherited from |
|||
Inherited from Cumulator | |||
---|---|---|---|
|
|||
|
|||
Inherited from Node | |||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|
|||
|
|||
|
|
|||
Inherited from |
|||
Inherited from Node | |||
---|---|---|---|
_train_seq List of tuples: |
|||
dtype dtype |
|||
input_dim Input dimensions |
|||
output_dim Output dimensions |
|||
supported_dtypes Supported dtypes |
|
Feature ranking with recursive feature elimination and cross-validated selection of the best number of features. This node has been automatically generated by wrapping the ``sklearn.feature_selection.rfe.RFECV`` class from the ``sklearn`` library. The wrapped instance can be accessed through the ``scikits_alg`` attribute. Read more in the :ref:`User Guide <rfe>`. **Parameters** estimator : object A supervised learning estimator with a `fit` method that updates a `coef_` attribute that holds the fitted parameters. Important features must correspond to high absolute values in the `coef_` array. For instance, this is the case for most supervised learning algorithms such as Support Vector Classifiers and Generalized Linear Models from the `svm` and `linear_model` modules. step : int or float, optional (default=1) If greater than or equal to 1, then `step` corresponds to the (integer) number of features to remove at each iteration. If within (0.0, 1.0), then `step` corresponds to the percentage (rounded down) of features to remove at each iteration. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if ``y`` is binary or multiclass, :class:`StratifiedKFold` used. If the estimator is a classifier or if ``y`` is neither binary nor multiclass, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. estimator_params : dict Parameters for the external estimator. This attribute is deprecated as of version 0.16 and will be removed in 0.18. Use estimator initialisation or set_params method instead. verbose : int, default=0 Controls verbosity of output. **Attributes** ``n_features_`` : int The number of selected features with cross-validation. ``support_`` : array of shape [n_features] The mask of selected features. ``ranking_`` : array of shape [n_features] The feature ranking, such that `ranking_[i]` corresponds to the ranking position of the i-th feature. Selected (i.e., estimated best) features are assigned rank 1. ``grid_scores_`` : array of shape [n_subsets_of_features] The cross-validation scores such that ``grid_scores_[i]`` corresponds to the CV score of the i-th subset of features. ``estimator_`` : object The external estimator fit on the reduced dataset. **Notes** The size of ``grid_scores_`` is equal to ceil((n_features - 1) / step) + 1, where step is the number of features removed at each iteration. **Examples** The following example shows how to retrieve the a-priori not known 5 informative features in the Friedman #1 dataset. >>> from sklearn.datasets import make_friedman1 >>> from sklearn.feature_selection import RFECV >>> from sklearn.svm import SVR >>> X, y = make_friedman1(n_samples=50, n_features=10, random_state=0) >>> estimator = SVR(kernel="linear") >>> selector = RFECV(estimator, step=1, cv=5) >>> selector = selector.fit(X, y) >>> selector.support_ # doctest: +NORMALIZE_WHITESPACE array([ True, True, True, True, True, False, False, False, False, False], dtype=bool) >>> selector.ranking_ array([1, 1, 1, 1, 1, 6, 4, 3, 2, 5]) **References** .. [1] Guyon, I., Weston, J., Barnhill, S., & Vapnik, V., "Gene selection for cancer classification using support vector machines", Mach. Learn., 46(1-3), 389--422, 2002.
|
|
|
|
Reduce X to the selected features. This node has been automatically generated by wrapping the sklearn.feature_selection.rfe.RFECV class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters
Returns
|
|
|
Fit the RFE model and automatically tune the number of selected features. This node has been automatically generated by wrapping the sklearn.feature_selection.rfe.RFECV class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters
|
Home | Trees | Indices | Help |
|
---|
Generated by Epydoc 3.0.1 on Tue Mar 8 12:39:48 2016 | http://epydoc.sourceforge.net |