| Home | Trees | Indices | Help |
|
|---|
|
|
Naive Bayes classifier for multivariate Bernoulli models.
This node has been automatically generated by wrapping the ``sklearn.naive_bayes.BernoulliNB`` class
from the ``sklearn`` library. The wrapped instance can be accessed
through the ``scikits_alg`` attribute.
Like MultinomialNB, this classifier is suitable for discrete data. The
difference is that while MultinomialNB works with occurrence counts,
BernoulliNB is designed for binary/boolean features.
Read more in the :ref:`User Guide <bernoulli_naive_bayes>`.
**Parameters**
alpha : float, optional (default=1.0)
Additive (Laplace/Lidstone) smoothing parameter
(0 for no smoothing).
binarize : float or None, optional
Threshold for binarizing (mapping to booleans) of sample features.
If None, input is presumed to already consist of binary vectors.
fit_prior : boolean
Whether to learn class prior probabilities or not.
If false, a uniform prior will be used.
class_prior : array-like, size=[n_classes,]
Prior probabilities of the classes. If specified the priors are not
adjusted according to the data.
**Attributes**
``class_log_prior_`` : array, shape = [n_classes]
Log probability of each class (smoothed).
``feature_log_prob_`` : array, shape = [n_classes, n_features]
Empirical log probability of features given a class, P(x_i|y).
``class_count_`` : array, shape = [n_classes]
Number of samples encountered for each class during fitting. This
value is weighted by the sample weight when provided.
``feature_count_`` : array, shape = [n_classes, n_features]
Number of samples encountered for each (class, feature)
during fitting. This value is weighted by the sample weight when
provided.
**Examples**
>>> import numpy as np
>>> X = np.random.randint(2, size=(6, 100))
>>> Y = np.array([1, 2, 3, 4, 4, 5])
>>> from sklearn.naive_bayes import BernoulliNB
>>> clf = BernoulliNB()
>>> clf.fit(X, Y)
BernoulliNB(alpha=1.0, binarize=0.0, class_prior=None, fit_prior=True)
>>> print(clf.predict(X[2:3]))
[3]
**References**
C.D. Manning, P. Raghavan and H. Schuetze (2008). Introduction to
Information Retrieval. Cambridge University Press, pp. 234-265.
http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html
A. McCallum and K. Nigam (1998). A comparison of event models for naive
Bayes text classification. Proc. AAAI/ICML-98 Workshop on Learning for
Text Categorization, pp. 41-48.
V. Metsis, I. Androutsopoulos and G. Paliouras (2006). Spam filtering with
naive Bayes -- Which naive Bayes? 3rd Conf. on Email and Anti-Spam (CEAS).
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
Inherited from Inherited from Inherited from |
|||
| Inherited from ClassifierCumulator | |||
|---|---|---|---|
|
|||
|
|||
|
|||
| Inherited from ClassifierNode | |||
|
|||
|
|||
|
|||
|
|||
|
|||
| Inherited from Node | |||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
Inherited from |
|||
| Inherited from Node | |||
|---|---|---|---|
|
_train_seq List of tuples: |
|||
|
dtype dtype |
|||
|
input_dim Input dimensions |
|||
|
output_dim Output dimensions |
|||
|
supported_dtypes Supported dtypes |
|||
|
|||
Naive Bayes classifier for multivariate Bernoulli models.
This node has been automatically generated by wrapping the ``sklearn.naive_bayes.BernoulliNB`` class
from the ``sklearn`` library. The wrapped instance can be accessed
through the ``scikits_alg`` attribute.
Like MultinomialNB, this classifier is suitable for discrete data. The
difference is that while MultinomialNB works with occurrence counts,
BernoulliNB is designed for binary/boolean features.
Read more in the :ref:`User Guide <bernoulli_naive_bayes>`.
**Parameters**
alpha : float, optional (default=1.0)
Additive (Laplace/Lidstone) smoothing parameter
(0 for no smoothing).
binarize : float or None, optional
Threshold for binarizing (mapping to booleans) of sample features.
If None, input is presumed to already consist of binary vectors.
fit_prior : boolean
Whether to learn class prior probabilities or not.
If false, a uniform prior will be used.
class_prior : array-like, size=[n_classes,]
Prior probabilities of the classes. If specified the priors are not
adjusted according to the data.
**Attributes**
``class_log_prior_`` : array, shape = [n_classes]
Log probability of each class (smoothed).
``feature_log_prob_`` : array, shape = [n_classes, n_features]
Empirical log probability of features given a class, P(x_i|y).
``class_count_`` : array, shape = [n_classes]
Number of samples encountered for each class during fitting. This
value is weighted by the sample weight when provided.
``feature_count_`` : array, shape = [n_classes, n_features]
Number of samples encountered for each (class, feature)
during fitting. This value is weighted by the sample weight when
provided.
**Examples**
>>> import numpy as np
>>> X = np.random.randint(2, size=(6, 100))
>>> Y = np.array([1, 2, 3, 4, 4, 5])
>>> from sklearn.naive_bayes import BernoulliNB
>>> clf = BernoulliNB()
>>> clf.fit(X, Y)
BernoulliNB(alpha=1.0, binarize=0.0, class_prior=None, fit_prior=True)
>>> print(clf.predict(X[2:3]))
[3]
**References**
C.D. Manning, P. Raghavan and H. Schuetze (2008). Introduction to
Information Retrieval. Cambridge University Press, pp. 234-265.
http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html
A. McCallum and K. Nigam (1998). A comparison of event models for naive
Bayes text classification. Proc. AAAI/ICML-98 Workshop on Learning for
Text Categorization, pp. 41-48.
V. Metsis, I. Androutsopoulos and G. Paliouras (2006). Spam filtering with
naive Bayes -- Which naive Bayes? 3rd Conf. on Email and Anti-Spam (CEAS).
|
|
|
Transform the data and labels lists to array objects and reshape them.
|
|
|
Perform classification on an array of test vectors X. This node has been automatically generated by wrapping the sklearn.naive_bayes.BernoulliNB class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters X : array-like, shape = [n_samples, n_features] Returns
|
Fit Naive Bayes classifier according to X, y This node has been automatically generated by wrapping the sklearn.naive_bayes.BernoulliNB class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters
Returns
|
| Home | Trees | Indices | Help |
|
|---|
| Generated by Epydoc 3.0.1 on Tue Mar 8 12:39:48 2016 | http://epydoc.sourceforge.net |