Package mdp :: Package nodes :: Class BinarizerScikitsLearnNode
[hide private]
[frames] | no frames]

Class BinarizerScikitsLearnNode



Binarize data (set feature values to 0 or 1) according to a threshold

This node has been automatically generated by wrapping the ``sklearn.preprocessing.data.Binarizer`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

Values greater than the threshold map to 1, while values less than
or equal to the threshold map to 0. With the default threshold of 0,
only positive values map to 1.

Binarization is a common operation on text count data where the
analyst can decide to only consider the presence or absence of a
feature rather than a quantified number of occurrences for instance.

It can also be used as a pre-processing step for estimators that
consider boolean random variables (e.g. modelled using the Bernoulli
distribution in a Bayesian setting).

Read more in the :ref:`User Guide <preprocessing_binarization>`.

**Parameters**

threshold : float, optional (0.0 by default)
    Feature values below or equal to this are replaced by 0, above it by 1.
    Threshold may not be less than 0 for operations on sparse matrices.

copy : boolean, optional, default True
    set to False to perform inplace binarization and avoid a copy (if
    the input is already a numpy array or a scipy.sparse CSR matrix).

**Notes**

If the input is a sparse matrix, only the non-zero values are subject
to update by the Binarizer class.

This estimator is stateless (besides constructor parameters), the
fit method does nothing but is useful when used in a pipeline.

Instance Methods [hide private]
 
__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
Binarize data (set feature values to 0 or 1) according to a threshold
 
_execute(self, x)
 
_get_supported_dtypes(self)
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
 
_stop_training(self, **kwargs)
Concatenate the collected data in a single array.
 
execute(self, x)
Binarize each element of X
 
stop_training(self, **kwargs)
Do nothing and return the estimator unchanged

Inherited from unreachable.newobject: __long__, __native__, __nonzero__, __unicode__, next

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

    Inherited from Cumulator
 
_train(self, *args)
Collect all input data in a list.
 
train(self, *args)
Collect all input data in a list.
    Inherited from Node
 
__add__(self, other)
 
__call__(self, x, *args, **kwargs)
Calling an instance of Node is equivalent to calling its execute method.
 
__repr__(self)
repr(x)
 
__str__(self)
str(x)
 
_check_input(self, x)
 
_check_output(self, y)
 
_check_train_args(self, x, *args, **kwargs)
 
_get_train_seq(self)
 
_if_training_stop_training(self)
 
_inverse(self, x)
 
_pre_execution_checks(self, x)
This method contains all pre-execution checks.
 
_pre_inversion_checks(self, y)
This method contains all pre-inversion checks.
 
_refcast(self, x)
Helper function to cast arrays to the internal dtype.
 
_set_dtype(self, t)
 
_set_input_dim(self, n)
 
_set_output_dim(self, n)
 
copy(self, protocol=None)
Return a deep copy of the node.
 
get_current_train_phase(self)
Return the index of the current training phase.
 
get_dtype(self)
Return dtype.
 
get_input_dim(self)
Return input dimensions.
 
get_output_dim(self)
Return output dimensions.
 
get_remaining_train_phase(self)
Return the number of training phases still to accomplish.
 
get_supported_dtypes(self)
Return dtypes supported by the node as a list of dtype objects.
 
has_multiple_training_phases(self)
Return True if the node has multiple training phases.
 
inverse(self, y, *args, **kwargs)
Invert y.
 
is_training(self)
Return True if the node is in the training phase, False otherwise.
 
save(self, filename, protocol=-1)
Save a pickled serialization of the node to filename. If filename is None, return a string.
 
set_dtype(self, t)
Set internal structures' dtype.
 
set_input_dim(self, n)
Set input dimensions.
 
set_output_dim(self, n)
Set output dimensions.
Static Methods [hide private]
 
is_invertible()
Return True if the node can be inverted, False otherwise.
 
is_trainable()
Return True if the node can be trained, False otherwise.
Properties [hide private]

Inherited from object: __class__

    Inherited from Node
  _train_seq
List of tuples:
  dtype
dtype
  input_dim
Input dimensions
  output_dim
Output dimensions
  supported_dtypes
Supported dtypes
Method Details [hide private]

__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
(Constructor)

 

Binarize data (set feature values to 0 or 1) according to a threshold

This node has been automatically generated by wrapping the ``sklearn.preprocessing.data.Binarizer`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

Values greater than the threshold map to 1, while values less than
or equal to the threshold map to 0. With the default threshold of 0,
only positive values map to 1.

Binarization is a common operation on text count data where the
analyst can decide to only consider the presence or absence of a
feature rather than a quantified number of occurrences for instance.

It can also be used as a pre-processing step for estimators that
consider boolean random variables (e.g. modelled using the Bernoulli
distribution in a Bayesian setting).

Read more in the :ref:`User Guide <preprocessing_binarization>`.

**Parameters**

threshold : float, optional (0.0 by default)
    Feature values below or equal to this are replaced by 0, above it by 1.
    Threshold may not be less than 0 for operations on sparse matrices.

copy : boolean, optional, default True
    set to False to perform inplace binarization and avoid a copy (if
    the input is already a numpy array or a scipy.sparse CSR matrix).

**Notes**

If the input is a sparse matrix, only the non-zero values are subject
to update by the Binarizer class.

This estimator is stateless (besides constructor parameters), the
fit method does nothing but is useful when used in a pipeline.

Overrides: object.__init__

_execute(self, x)

 
Overrides: Node._execute

_get_supported_dtypes(self)

 
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
Overrides: Node._get_supported_dtypes

_stop_training(self, **kwargs)

 
Concatenate the collected data in a single array.
Overrides: Node._stop_training

execute(self, x)

 

Binarize each element of X

This node has been automatically generated by wrapping the sklearn.preprocessing.data.Binarizer class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

Parameters

X : {array-like, sparse matrix}, shape [n_samples, n_features]
The data to binarize, element by element. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy.
Overrides: Node.execute

is_invertible()
Static Method

 
Return True if the node can be inverted, False otherwise.
Overrides: Node.is_invertible
(inherited documentation)

is_trainable()
Static Method

 
Return True if the node can be trained, False otherwise.
Overrides: Node.is_trainable

stop_training(self, **kwargs)

 

Do nothing and return the estimator unchanged

This node has been automatically generated by wrapping the sklearn.preprocessing.data.Binarizer class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

This method is just there to implement the usual API and hence work in pipelines.

Overrides: Node.stop_training