Package mdp :: Package nodes :: Class DictVectorizerScikitsLearnNode
[hide private]
[frames] | no frames]

Class DictVectorizerScikitsLearnNode



Transforms lists of feature-value mappings to vectors.

This node has been automatically generated by wrapping the ``sklearn.feature_extraction.dict_vectorizer.DictVectorizer`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

This transformer turns lists of mappings (dict-like objects) of feature
names to feature values into Numpy arrays or scipy.sparse matrices for use
with scikit-learn estimators.

When feature values are strings, this transformer will do a binary one-hot
(aka one-of-K) coding: one boolean-valued feature is constructed for each
of the possible string values that the feature can take on. For instance,
a feature "f" that can take on the values "ham" and "spam" will become two
features in the output, one signifying "f=ham", the other "f=spam".

Features that do not occur in a sample (mapping) will have a zero value
in the resulting array/matrix.

Read more in the :ref:`User Guide <dict_feature_extraction>`.

**Parameters**

dtype : callable, optional
    The type of feature values. Passed to Numpy array/scipy.sparse matrix
    constructors as the dtype argument.
separator: string, optional
    Separator string used when constructing new features for one-hot
    coding.
sparse: boolean, optional.
    Whether transform should produce scipy.sparse matrices.
    True by default.
sort: boolean, optional.
    Whether ``feature_names_`` and ``vocabulary_`` should be sorted when fitting.
    True by default.

**Attributes**

``vocabulary_`` : dict
    A dictionary mapping feature names to feature indices.

``feature_names_`` : list
    A list of length n_features containing the feature names (e.g., "f=ham"
    and "f=spam").

**Examples**

>>> from sklearn.feature_extraction import DictVectorizer
>>> v = DictVectorizer(sparse=False)
>>> D = [{'foo': 1, 'bar': 2}, {'foo': 3, 'baz': 1}]
>>> X = v.fit_transform(D)
>>> X
array([[ 2.,  0.,  1.],
       [ 0.,  1.,  3.]])
>>> v.inverse_transform(X) ==         [{'bar': 2.0, 'foo': 1.0}, {'baz': 1.0, 'foo': 3.0}]
True
>>> v.transform({'foo': 4, 'unseen_feature': 3})
array([[ 0.,  0.,  4.]])

See also

FeatureHasher : performs vectorization using only a hash function.
sklearn.preprocessing.OneHotEncoder : handles nominal/categorical features
  encoded as columns of integers.

Instance Methods [hide private]
 
__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
Transforms lists of feature-value mappings to vectors.
 
_execute(self, x)
 
_get_supported_dtypes(self)
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
 
_stop_training(self, **kwargs)
Concatenate the collected data in a single array.
 
execute(self, x)
Transform feature->value dicts to array or sparse matrix.
 
stop_training(self, **kwargs)
Learn a list of feature name -> indices mappings.

Inherited from unreachable.newobject: __long__, __native__, __nonzero__, __unicode__, next

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

    Inherited from Cumulator
 
_train(self, *args)
Collect all input data in a list.
 
train(self, *args)
Collect all input data in a list.
    Inherited from Node
 
__add__(self, other)
 
__call__(self, x, *args, **kwargs)
Calling an instance of Node is equivalent to calling its execute method.
 
__repr__(self)
repr(x)
 
__str__(self)
str(x)
 
_check_input(self, x)
 
_check_output(self, y)
 
_check_train_args(self, x, *args, **kwargs)
 
_get_train_seq(self)
 
_if_training_stop_training(self)
 
_inverse(self, x)
 
_pre_execution_checks(self, x)
This method contains all pre-execution checks.
 
_pre_inversion_checks(self, y)
This method contains all pre-inversion checks.
 
_refcast(self, x)
Helper function to cast arrays to the internal dtype.
 
_set_dtype(self, t)
 
_set_input_dim(self, n)
 
_set_output_dim(self, n)
 
copy(self, protocol=None)
Return a deep copy of the node.
 
get_current_train_phase(self)
Return the index of the current training phase.
 
get_dtype(self)
Return dtype.
 
get_input_dim(self)
Return input dimensions.
 
get_output_dim(self)
Return output dimensions.
 
get_remaining_train_phase(self)
Return the number of training phases still to accomplish.
 
get_supported_dtypes(self)
Return dtypes supported by the node as a list of dtype objects.
 
has_multiple_training_phases(self)
Return True if the node has multiple training phases.
 
inverse(self, y, *args, **kwargs)
Invert y.
 
is_training(self)
Return True if the node is in the training phase, False otherwise.
 
save(self, filename, protocol=-1)
Save a pickled serialization of the node to filename. If filename is None, return a string.
 
set_dtype(self, t)
Set internal structures' dtype.
 
set_input_dim(self, n)
Set input dimensions.
 
set_output_dim(self, n)
Set output dimensions.
Static Methods [hide private]
 
is_invertible()
Return True if the node can be inverted, False otherwise.
 
is_trainable()
Return True if the node can be trained, False otherwise.
Properties [hide private]

Inherited from object: __class__

    Inherited from Node
  _train_seq
List of tuples:
  dtype
dtype
  input_dim
Input dimensions
  output_dim
Output dimensions
  supported_dtypes
Supported dtypes
Method Details [hide private]

__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
(Constructor)

 

Transforms lists of feature-value mappings to vectors.

This node has been automatically generated by wrapping the ``sklearn.feature_extraction.dict_vectorizer.DictVectorizer`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

This transformer turns lists of mappings (dict-like objects) of feature
names to feature values into Numpy arrays or scipy.sparse matrices for use
with scikit-learn estimators.

When feature values are strings, this transformer will do a binary one-hot
(aka one-of-K) coding: one boolean-valued feature is constructed for each
of the possible string values that the feature can take on. For instance,
a feature "f" that can take on the values "ham" and "spam" will become two
features in the output, one signifying "f=ham", the other "f=spam".

Features that do not occur in a sample (mapping) will have a zero value
in the resulting array/matrix.

Read more in the :ref:`User Guide <dict_feature_extraction>`.

**Parameters**

dtype : callable, optional
    The type of feature values. Passed to Numpy array/scipy.sparse matrix
    constructors as the dtype argument.
separator: string, optional
    Separator string used when constructing new features for one-hot
    coding.
sparse: boolean, optional.
    Whether transform should produce scipy.sparse matrices.
    True by default.
sort: boolean, optional.
    Whether ``feature_names_`` and ``vocabulary_`` should be sorted when fitting.
    True by default.

**Attributes**

``vocabulary_`` : dict
    A dictionary mapping feature names to feature indices.

``feature_names_`` : list
    A list of length n_features containing the feature names (e.g., "f=ham"
    and "f=spam").

**Examples**

>>> from sklearn.feature_extraction import DictVectorizer
>>> v = DictVectorizer(sparse=False)
>>> D = [{'foo': 1, 'bar': 2}, {'foo': 3, 'baz': 1}]
>>> X = v.fit_transform(D)
>>> X
array([[ 2.,  0.,  1.],
       [ 0.,  1.,  3.]])
>>> v.inverse_transform(X) ==         [{'bar': 2.0, 'foo': 1.0}, {'baz': 1.0, 'foo': 3.0}]
True
>>> v.transform({'foo': 4, 'unseen_feature': 3})
array([[ 0.,  0.,  4.]])

See also

FeatureHasher : performs vectorization using only a hash function.
sklearn.preprocessing.OneHotEncoder : handles nominal/categorical features
  encoded as columns of integers.

Overrides: object.__init__

_execute(self, x)

 
Overrides: Node._execute

_get_supported_dtypes(self)

 
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
Overrides: Node._get_supported_dtypes

_stop_training(self, **kwargs)

 
Concatenate the collected data in a single array.
Overrides: Node._stop_training

execute(self, x)

 

Transform feature->value dicts to array or sparse matrix.

This node has been automatically generated by wrapping the sklearn.feature_extraction.dict_vectorizer.DictVectorizer class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

Named features not encountered during fit or fit_transform will be silently ignored.

Parameters

X : Mapping or iterable over Mappings, length = n_samples
Dict(s) or Mapping(s) from feature names (arbitrary Python objects) to feature values (strings or convertible to dtype).

y : (ignored)

Returns

Xa : {array, sparse matrix}
Feature vectors; always 2-d.
Overrides: Node.execute

is_invertible()
Static Method

 
Return True if the node can be inverted, False otherwise.
Overrides: Node.is_invertible
(inherited documentation)

is_trainable()
Static Method

 
Return True if the node can be trained, False otherwise.
Overrides: Node.is_trainable

stop_training(self, **kwargs)

 

Learn a list of feature name -> indices mappings.

This node has been automatically generated by wrapping the sklearn.feature_extraction.dict_vectorizer.DictVectorizer class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

Parameters

X : Mapping or iterable over Mappings
Dict(s) or Mapping(s) from feature names (arbitrary Python objects) to feature values (strings or convertible to dtype).

y : (ignored)

Returns

self

Overrides: Node.stop_training