| Home | Trees | Indices | Help |
|
|---|
|
|
Elastic Net model with iterative fitting along a regularization path
This node has been automatically generated by wrapping the ``sklearn.linear_model.coordinate_descent.ElasticNetCV`` class
from the ``sklearn`` library. The wrapped instance can be accessed
through the ``scikits_alg`` attribute.
The best model is selected by cross-validation.
Read more in the :ref:`User Guide <elastic_net>`.
**Parameters**
l1_ratio : float or array of floats, optional
float between 0 and 1 passed to ElasticNet (scaling between
l1 and l2 penalties). For ``l1_ratio = 0``
the penalty is an L2 penalty. For ``l1_ratio = 1`` it is an L1 penalty.
For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2
This parameter can be a list, in which case the different
values are tested by cross-validation and the one giving the best
prediction score is used. Note that a good choice of list of
values for l1_ratio is often to put more values close to 1
(i.e. Lasso) and less close to 0 (i.e. Ridge), as in ``[.1, .5, .7,
.9, .95, .99, 1]``
eps : float, optional
Length of the path. ``eps=1e-3`` means that
``alpha_min / alpha_max = 1e-3``.
n_alphas : int, optional
Number of alphas along the regularization path, used for each l1_ratio.
alphas : numpy array, optional
List of alphas where to compute the models.
If None alphas are set automatically
precompute : True | False | 'auto' | array-like
Whether to use a precomputed Gram matrix to speed up
calculations. If set to ``'auto'`` let us decide. The Gram
matrix can also be passed as argument.
max_iter : int, optional
The maximum number of iterations
tol : float, optional
The tolerance for the optimization: if the updates are
smaller than ``tol``, the optimization code checks the
dual gap for optimality and continues until it is smaller
than ``tol``.
cv : int, cross-validation generator or an iterable, optional
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 3-fold cross-validation,
- integer, to specify the number of folds.
- An object to be used as a cross-validation generator.
- An iterable yielding train/test splits.
For integer/None inputs, :class:`KFold` is used.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
verbose : bool or integer
Amount of verbosity.
n_jobs : integer, optional
Number of CPUs to use during the cross validation. If ``-1``, use
all the CPUs.
positive : bool, optional
When set to ``True``, forces the coefficients to be positive.
selection : str, default 'cyclic'
If set to 'random', a random coefficient is updated every iteration
rather than looping over features sequentially by default. This
(setting to 'random') often leads to significantly faster convergence
especially when tol is higher than 1e-4.
random_state : int, RandomState instance, or None (default)
The seed of the pseudo random number generator that selects
a random feature to update. Useful only when selection is set to
'random'.
fit_intercept : boolean
whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(e.g. data is expected to be already centered).
normalize : boolean, optional, default False
If ``True``, the regressors X will be normalized before regression.
copy_X : boolean, optional, default True
If ``True``, X will be copied; else, it may be overwritten.
**Attributes**
``alpha_`` : float
The amount of penalization chosen by cross validation
``l1_ratio_`` : float
The compromise between l1 and l2 penalization chosen by
cross validation
``coef_`` : array, shape (n_features,) | (n_targets, n_features)
Parameter vector (w in the cost function formula),
``intercept_`` : float | array, shape (n_targets, n_features)
Independent term in the decision function.
``mse_path_`` : array, shape (n_l1_ratio, n_alpha, n_folds)
Mean square error for the test set on each fold, varying l1_ratio and
alpha.
``alphas_`` : numpy array, shape (n_alphas,) or (n_l1_ratio, n_alphas)
The grid of alphas used for fitting, for each l1_ratio.
``n_iter_`` : int
number of iterations run by the coordinate descent solver to reach
the specified tolerance for the optimal alpha.
**Notes**
See examples/linear_model/lasso_path_with_crossvalidation.py
for an example.
To avoid unnecessary memory duplication the X argument of the fit method
should be directly passed as a Fortran-contiguous numpy array.
The parameter l1_ratio corresponds to alpha in the glmnet R package
while alpha corresponds to the lambda parameter in glmnet.
More specifically, the optimization objective is::
1 / (2 * n_samples) * ||y - Xw||^2_2 +
+ alpha * l1_ratio * ||w||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2
If you are interested in controlling the L1 and L2 penalty
separately, keep in mind that this is equivalent to::
a * L1 + b * L2
for::
alpha = a + b and l1_ratio = a / (a + b).
See also
enet_path
ElasticNet
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
Inherited from Inherited from |
|||
| Inherited from Cumulator | |||
|---|---|---|---|
|
|||
|
|||
| Inherited from Node | |||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
Inherited from |
|||
| Inherited from Node | |||
|---|---|---|---|
|
_train_seq List of tuples: |
|||
|
dtype dtype |
|||
|
input_dim Input dimensions |
|||
|
output_dim Output dimensions |
|||
|
supported_dtypes Supported dtypes |
|||
|
|||
Elastic Net model with iterative fitting along a regularization path
This node has been automatically generated by wrapping the ``sklearn.linear_model.coordinate_descent.ElasticNetCV`` class
from the ``sklearn`` library. The wrapped instance can be accessed
through the ``scikits_alg`` attribute.
The best model is selected by cross-validation.
Read more in the :ref:`User Guide <elastic_net>`.
**Parameters**
l1_ratio : float or array of floats, optional
float between 0 and 1 passed to ElasticNet (scaling between
l1 and l2 penalties). For ``l1_ratio = 0``
the penalty is an L2 penalty. For ``l1_ratio = 1`` it is an L1 penalty.
For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2
This parameter can be a list, in which case the different
values are tested by cross-validation and the one giving the best
prediction score is used. Note that a good choice of list of
values for l1_ratio is often to put more values close to 1
(i.e. Lasso) and less close to 0 (i.e. Ridge), as in ``[.1, .5, .7,
.9, .95, .99, 1]``
eps : float, optional
Length of the path. ``eps=1e-3`` means that
``alpha_min / alpha_max = 1e-3``.
n_alphas : int, optional
Number of alphas along the regularization path, used for each l1_ratio.
alphas : numpy array, optional
List of alphas where to compute the models.
If None alphas are set automatically
precompute : True | False | 'auto' | array-like
Whether to use a precomputed Gram matrix to speed up
calculations. If set to ``'auto'`` let us decide. The Gram
matrix can also be passed as argument.
max_iter : int, optional
The maximum number of iterations
tol : float, optional
The tolerance for the optimization: if the updates are
smaller than ``tol``, the optimization code checks the
dual gap for optimality and continues until it is smaller
than ``tol``.
cv : int, cross-validation generator or an iterable, optional
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 3-fold cross-validation,
- integer, to specify the number of folds.
- An object to be used as a cross-validation generator.
- An iterable yielding train/test splits.
For integer/None inputs, :class:`KFold` is used.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
verbose : bool or integer
Amount of verbosity.
n_jobs : integer, optional
Number of CPUs to use during the cross validation. If ``-1``, use
all the CPUs.
positive : bool, optional
When set to ``True``, forces the coefficients to be positive.
selection : str, default 'cyclic'
If set to 'random', a random coefficient is updated every iteration
rather than looping over features sequentially by default. This
(setting to 'random') often leads to significantly faster convergence
especially when tol is higher than 1e-4.
random_state : int, RandomState instance, or None (default)
The seed of the pseudo random number generator that selects
a random feature to update. Useful only when selection is set to
'random'.
fit_intercept : boolean
whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(e.g. data is expected to be already centered).
normalize : boolean, optional, default False
If ``True``, the regressors X will be normalized before regression.
copy_X : boolean, optional, default True
If ``True``, X will be copied; else, it may be overwritten.
**Attributes**
``alpha_`` : float
The amount of penalization chosen by cross validation
``l1_ratio_`` : float
The compromise between l1 and l2 penalization chosen by
cross validation
``coef_`` : array, shape (n_features,) | (n_targets, n_features)
Parameter vector (w in the cost function formula),
``intercept_`` : float | array, shape (n_targets, n_features)
Independent term in the decision function.
``mse_path_`` : array, shape (n_l1_ratio, n_alpha, n_folds)
Mean square error for the test set on each fold, varying l1_ratio and
alpha.
``alphas_`` : numpy array, shape (n_alphas,) or (n_l1_ratio, n_alphas)
The grid of alphas used for fitting, for each l1_ratio.
``n_iter_`` : int
number of iterations run by the coordinate descent solver to reach
the specified tolerance for the optimal alpha.
**Notes**
See examples/linear_model/lasso_path_with_crossvalidation.py
for an example.
To avoid unnecessary memory duplication the X argument of the fit method
should be directly passed as a Fortran-contiguous numpy array.
The parameter l1_ratio corresponds to alpha in the glmnet R package
while alpha corresponds to the lambda parameter in glmnet.
More specifically, the optimization objective is::
1 / (2 * n_samples) * ||y - Xw||^2_2 +
+ alpha * l1_ratio * ||w||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2
If you are interested in controlling the L1 and L2 penalty
separately, keep in mind that this is equivalent to::
a * L1 + b * L2
for::
alpha = a + b and l1_ratio = a / (a + b).
See also
enet_path
ElasticNet
|
|
|
|
Predict using the linear model This node has been automatically generated by wrapping the sklearn.linear_model.coordinate_descent.ElasticNetCV class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters
Returns
|
|
|
Fit linear model with coordinate descent This node has been automatically generated by wrapping the sklearn.linear_model.coordinate_descent.ElasticNetCV class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Fit is on grid of alphas and best alpha estimated by cross-validation. Parameters
|
| Home | Trees | Indices | Help |
|
|---|
| Generated by Epydoc 3.0.1 on Tue Mar 8 12:39:48 2016 | http://epydoc.sourceforge.net |