Package mdp :: Package nodes :: Class ElasticNetScikitsLearnNode
[hide private]
[frames] | no frames]

Class ElasticNetScikitsLearnNode



Linear regression with combined L1 and L2 priors as regularizer.

This node has been automatically generated by wrapping the ``sklearn.linear_model.coordinate_descent.ElasticNet`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

Minimizes the objective function::


        1 / (2 * n_samples) * ||y - Xw||^2_2 +
        + alpha * l1_ratio * ||w||_1
        + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2

If you are interested in controlling the L1 and L2 penalty
separately, keep in mind that this is equivalent to::


        a * L1 + b * L2

where::


        alpha = a + b and l1_ratio = a / (a + b)

The parameter l1_ratio corresponds to alpha in the glmnet R package while
alpha corresponds to the lambda parameter in glmnet. Specifically, l1_ratio
= 1 is the lasso penalty. Currently, l1_ratio <= 0.01 is not reliable,
unless you supply your own sequence of alpha.

Read more in the :ref:`User Guide <elastic_net>`.

**Parameters**

alpha : float
    Constant that multiplies the penalty terms. Defaults to 1.0
    See the notes for the exact mathematical meaning of this
    parameter.
    ``alpha = 0`` is equivalent to an ordinary least square, solved
    by the :class:`LinearRegression` object. For numerical
    reasons, using ``alpha = 0`` with the Lasso object is not advised
    and you should prefer the LinearRegression object.

l1_ratio : float
    The ElasticNet mixing parameter, with ``0 <= l1_ratio <= 1``. For
    ``l1_ratio = 0`` the penalty is an L2 penalty. ``For l1_ratio = 1`` it
    is an L1 penalty.  For ``0 < l1_ratio < 1``, the penalty is a
    combination of L1 and L2.

fit_intercept : bool
    Whether the intercept should be estimated or not. If ``False``, the
    data is assumed to be already centered.

normalize : boolean, optional, default False
    If ``True``, the regressors X will be normalized before regression.

precompute : True | False | 'auto' | array-like
    Whether to use a precomputed Gram matrix to speed up
    calculations. If set to ``'auto'`` let us decide. The Gram
    matrix can also be passed as argument. For sparse input
    this option is always ``True`` to preserve sparsity.
    WARNING : The ``'auto'`` option is deprecated and will
    be removed in 0.18.

max_iter : int, optional
    The maximum number of iterations

copy_X : boolean, optional, default True
    If ``True``, X will be copied; else, it may be overwritten.

tol : float, optional
    The tolerance for the optimization: if the updates are
    smaller than ``tol``, the optimization code checks the
    dual gap for optimality and continues until it is smaller
    than ``tol``.

warm_start : bool, optional
    When set to ``True``, reuse the solution of the previous call to fit as
    initialization, otherwise, just erase the previous solution.

positive : bool, optional
    When set to ``True``, forces the coefficients to be positive.

selection : str, default 'cyclic'
    If set to 'random', a random coefficient is updated every iteration
    rather than looping over features sequentially by default. This
    (setting to 'random') often leads to significantly faster convergence
    especially when tol is higher than 1e-4.

random_state : int, RandomState instance, or None (default)
    The seed of the pseudo random number generator that selects
    a random feature to update. Useful only when selection is set to
    'random'.

**Attributes**

``coef_`` : array, shape (n_features,) | (n_targets, n_features)
    parameter vector (w in the cost function formula)

``sparse_coef_`` : scipy.sparse matrix, shape (n_features, 1) |             (n_targets, n_features)
    ``sparse_coef_`` is a readonly property derived from ``coef_``

``intercept_`` : float | array, shape (n_targets,)
    independent term in decision function.

``n_iter_`` : array-like, shape (n_targets,)
    number of iterations run by the coordinate descent solver to reach
    the specified tolerance.

**Notes**

To avoid unnecessary memory duplication the X argument of the fit method
should be directly passed as a Fortran-contiguous numpy array.

See also

SGDRegressor: implements elastic net regression with incremental training.
SGDClassifier: implements logistic regression with elastic net penalty
    (``SGDClassifier(loss="log", penalty="elasticnet")``).

Instance Methods [hide private]
 
__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
Linear regression with combined L1 and L2 priors as regularizer.
 
_execute(self, x)
 
_get_supported_dtypes(self)
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
 
_stop_training(self, **kwargs)
Concatenate the collected data in a single array.
 
execute(self, x)
Predict using the linear model
 
stop_training(self, **kwargs)
Fit model with coordinate descent.

Inherited from unreachable.newobject: __long__, __native__, __nonzero__, __unicode__, next

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

    Inherited from Cumulator
 
_train(self, *args)
Collect all input data in a list.
 
train(self, *args)
Collect all input data in a list.
    Inherited from Node
 
__add__(self, other)
 
__call__(self, x, *args, **kwargs)
Calling an instance of Node is equivalent to calling its execute method.
 
__repr__(self)
repr(x)
 
__str__(self)
str(x)
 
_check_input(self, x)
 
_check_output(self, y)
 
_check_train_args(self, x, *args, **kwargs)
 
_get_train_seq(self)
 
_if_training_stop_training(self)
 
_inverse(self, x)
 
_pre_execution_checks(self, x)
This method contains all pre-execution checks.
 
_pre_inversion_checks(self, y)
This method contains all pre-inversion checks.
 
_refcast(self, x)
Helper function to cast arrays to the internal dtype.
 
_set_dtype(self, t)
 
_set_input_dim(self, n)
 
_set_output_dim(self, n)
 
copy(self, protocol=None)
Return a deep copy of the node.
 
get_current_train_phase(self)
Return the index of the current training phase.
 
get_dtype(self)
Return dtype.
 
get_input_dim(self)
Return input dimensions.
 
get_output_dim(self)
Return output dimensions.
 
get_remaining_train_phase(self)
Return the number of training phases still to accomplish.
 
get_supported_dtypes(self)
Return dtypes supported by the node as a list of dtype objects.
 
has_multiple_training_phases(self)
Return True if the node has multiple training phases.
 
inverse(self, y, *args, **kwargs)
Invert y.
 
is_training(self)
Return True if the node is in the training phase, False otherwise.
 
save(self, filename, protocol=-1)
Save a pickled serialization of the node to filename. If filename is None, return a string.
 
set_dtype(self, t)
Set internal structures' dtype.
 
set_input_dim(self, n)
Set input dimensions.
 
set_output_dim(self, n)
Set output dimensions.
Static Methods [hide private]
 
is_invertible()
Return True if the node can be inverted, False otherwise.
 
is_trainable()
Return True if the node can be trained, False otherwise.
Properties [hide private]

Inherited from object: __class__

    Inherited from Node
  _train_seq
List of tuples:
  dtype
dtype
  input_dim
Input dimensions
  output_dim
Output dimensions
  supported_dtypes
Supported dtypes
Method Details [hide private]

__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
(Constructor)

 

Linear regression with combined L1 and L2 priors as regularizer.

This node has been automatically generated by wrapping the ``sklearn.linear_model.coordinate_descent.ElasticNet`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

Minimizes the objective function::


        1 / (2 * n_samples) * ||y - Xw||^2_2 +
        + alpha * l1_ratio * ||w||_1
        + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2

If you are interested in controlling the L1 and L2 penalty
separately, keep in mind that this is equivalent to::


        a * L1 + b * L2

where::


        alpha = a + b and l1_ratio = a / (a + b)

The parameter l1_ratio corresponds to alpha in the glmnet R package while
alpha corresponds to the lambda parameter in glmnet. Specifically, l1_ratio
= 1 is the lasso penalty. Currently, l1_ratio <= 0.01 is not reliable,
unless you supply your own sequence of alpha.

Read more in the :ref:`User Guide <elastic_net>`.

**Parameters**

alpha : float
    Constant that multiplies the penalty terms. Defaults to 1.0
    See the notes for the exact mathematical meaning of this
    parameter.
    ``alpha = 0`` is equivalent to an ordinary least square, solved
    by the :class:`LinearRegression` object. For numerical
    reasons, using ``alpha = 0`` with the Lasso object is not advised
    and you should prefer the LinearRegression object.

l1_ratio : float
    The ElasticNet mixing parameter, with ``0 <= l1_ratio <= 1``. For
    ``l1_ratio = 0`` the penalty is an L2 penalty. ``For l1_ratio = 1`` it
    is an L1 penalty.  For ``0 < l1_ratio < 1``, the penalty is a
    combination of L1 and L2.

fit_intercept : bool
    Whether the intercept should be estimated or not. If ``False``, the
    data is assumed to be already centered.

normalize : boolean, optional, default False
    If ``True``, the regressors X will be normalized before regression.

precompute : True | False | 'auto' | array-like
    Whether to use a precomputed Gram matrix to speed up
    calculations. If set to ``'auto'`` let us decide. The Gram
    matrix can also be passed as argument. For sparse input
    this option is always ``True`` to preserve sparsity.
    WARNING : The ``'auto'`` option is deprecated and will
    be removed in 0.18.

max_iter : int, optional
    The maximum number of iterations

copy_X : boolean, optional, default True
    If ``True``, X will be copied; else, it may be overwritten.

tol : float, optional
    The tolerance for the optimization: if the updates are
    smaller than ``tol``, the optimization code checks the
    dual gap for optimality and continues until it is smaller
    than ``tol``.

warm_start : bool, optional
    When set to ``True``, reuse the solution of the previous call to fit as
    initialization, otherwise, just erase the previous solution.

positive : bool, optional
    When set to ``True``, forces the coefficients to be positive.

selection : str, default 'cyclic'
    If set to 'random', a random coefficient is updated every iteration
    rather than looping over features sequentially by default. This
    (setting to 'random') often leads to significantly faster convergence
    especially when tol is higher than 1e-4.

random_state : int, RandomState instance, or None (default)
    The seed of the pseudo random number generator that selects
    a random feature to update. Useful only when selection is set to
    'random'.

**Attributes**

``coef_`` : array, shape (n_features,) | (n_targets, n_features)
    parameter vector (w in the cost function formula)

``sparse_coef_`` : scipy.sparse matrix, shape (n_features, 1) |             (n_targets, n_features)
    ``sparse_coef_`` is a readonly property derived from ``coef_``

``intercept_`` : float | array, shape (n_targets,)
    independent term in decision function.

``n_iter_`` : array-like, shape (n_targets,)
    number of iterations run by the coordinate descent solver to reach
    the specified tolerance.

**Notes**

To avoid unnecessary memory duplication the X argument of the fit method
should be directly passed as a Fortran-contiguous numpy array.

See also

SGDRegressor: implements elastic net regression with incremental training.
SGDClassifier: implements logistic regression with elastic net penalty
    (``SGDClassifier(loss="log", penalty="elasticnet")``).

Overrides: object.__init__

_execute(self, x)

 
Overrides: Node._execute

_get_supported_dtypes(self)

 
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
Overrides: Node._get_supported_dtypes

_stop_training(self, **kwargs)

 
Concatenate the collected data in a single array.
Overrides: Node._stop_training

execute(self, x)

 

Predict using the linear model

This node has been automatically generated by wrapping the sklearn.linear_model.coordinate_descent.ElasticNet class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

Parameters

X : {array-like, sparse matrix}, shape = (n_samples, n_features)
Samples.

Returns

C : array, shape = (n_samples,)
Returns predicted values.
Overrides: Node.execute

is_invertible()
Static Method

 
Return True if the node can be inverted, False otherwise.
Overrides: Node.is_invertible
(inherited documentation)

is_trainable()
Static Method

 
Return True if the node can be trained, False otherwise.
Overrides: Node.is_trainable

stop_training(self, **kwargs)

 

Fit model with coordinate descent.

This node has been automatically generated by wrapping the sklearn.linear_model.coordinate_descent.ElasticNet class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

Parameters

X : ndarray or scipy.sparse matrix, (n_samples, n_features)
Data
y : ndarray, shape (n_samples,) or (n_samples, n_targets)
Target

Notes

Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically convert the X input as a Fortran-contiguous numpy array if necessary.

To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format.

Overrides: Node.stop_training