Package mdp :: Package nodes :: Class FastICAScikitsLearnNode
[hide private]
[frames] | no frames]

Class FastICAScikitsLearnNode



FastICA: a fast algorithm for Independent Component Analysis.

This node has been automatically generated by wrapping the ``sklearn.decomposition.fastica_.FastICA`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

Read more in the :ref:`User Guide <ICA>`.

**Parameters**

n_components : int, optional
    Number of components to use. If none is passed, all are used.

algorithm : {'parallel', 'deflation'}
    Apply parallel or deflational algorithm for FastICA.

whiten : boolean, optional
    If whiten is false, the data is already considered to be
    whitened, and no whitening is performed.

fun : string or function, optional. Default: 'logcosh'
    The functional form of the G function used in the
    approximation to neg-entropy. Could be either 'logcosh', 'exp',
    or 'cube'.
    You can also provide your own function. It should return a tuple
    containing the value of the function, and of its derivative, in the
    point. Example:


    def my_g(x):

        - return x ** 3, 3 * x ** 2


fun_args : dictionary, optional
    Arguments to send to the functional form.
    If empty and if fun='logcosh', fun_args will take value
    {'alpha' : 1.0}.

max_iter : int, optional
    Maximum number of iterations during fit.

tol : float, optional
    Tolerance on update at each iteration.

w_init : None of an (n_components, n_components) ndarray
    The mixing matrix to be used to initialize the algorithm.

random_state : int or RandomState
    Pseudo number generator state used for random sampling.

**Attributes**

``components_`` : 2D array, shape (n_components, n_features)
    The unmixing matrix.

``mixing_`` : array, shape (n_features, n_components)
    The mixing matrix.

``n_iter_`` : int
    If the algorithm is "deflation", n_iter is the
    maximum number of iterations run across all components. Else
    they are just the number of iterations taken to converge.

**Notes**

Implementation based on
`A. Hyvarinen and E. Oja, Independent Component Analysis:

Algorithms and Applications, Neural Networks, 13(4-5), 2000,
pp. 411-430`

Instance Methods [hide private]
 
__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
FastICA: a fast algorithm for Independent Component Analysis.
 
_execute(self, x)
 
_get_supported_dtypes(self)
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
 
_stop_training(self, **kwargs)
Concatenate the collected data in a single array.
 
execute(self, x)
Recover the sources from X (apply the unmixing matrix).
 
stop_training(self, **kwargs)
Fit the model to X.

Inherited from unreachable.newobject: __long__, __native__, __nonzero__, __unicode__, next

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

    Inherited from Cumulator
 
_train(self, *args)
Collect all input data in a list.
 
train(self, *args)
Collect all input data in a list.
    Inherited from Node
 
__add__(self, other)
 
__call__(self, x, *args, **kwargs)
Calling an instance of Node is equivalent to calling its execute method.
 
__repr__(self)
repr(x)
 
__str__(self)
str(x)
 
_check_input(self, x)
 
_check_output(self, y)
 
_check_train_args(self, x, *args, **kwargs)
 
_get_train_seq(self)
 
_if_training_stop_training(self)
 
_inverse(self, x)
 
_pre_execution_checks(self, x)
This method contains all pre-execution checks.
 
_pre_inversion_checks(self, y)
This method contains all pre-inversion checks.
 
_refcast(self, x)
Helper function to cast arrays to the internal dtype.
 
_set_dtype(self, t)
 
_set_input_dim(self, n)
 
_set_output_dim(self, n)
 
copy(self, protocol=None)
Return a deep copy of the node.
 
get_current_train_phase(self)
Return the index of the current training phase.
 
get_dtype(self)
Return dtype.
 
get_input_dim(self)
Return input dimensions.
 
get_output_dim(self)
Return output dimensions.
 
get_remaining_train_phase(self)
Return the number of training phases still to accomplish.
 
get_supported_dtypes(self)
Return dtypes supported by the node as a list of dtype objects.
 
has_multiple_training_phases(self)
Return True if the node has multiple training phases.
 
inverse(self, y, *args, **kwargs)
Invert y.
 
is_training(self)
Return True if the node is in the training phase, False otherwise.
 
save(self, filename, protocol=-1)
Save a pickled serialization of the node to filename. If filename is None, return a string.
 
set_dtype(self, t)
Set internal structures' dtype.
 
set_input_dim(self, n)
Set input dimensions.
 
set_output_dim(self, n)
Set output dimensions.
Static Methods [hide private]
 
is_invertible()
Return True if the node can be inverted, False otherwise.
 
is_trainable()
Return True if the node can be trained, False otherwise.
Properties [hide private]

Inherited from object: __class__

    Inherited from Node
  _train_seq
List of tuples:
  dtype
dtype
  input_dim
Input dimensions
  output_dim
Output dimensions
  supported_dtypes
Supported dtypes
Method Details [hide private]

__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
(Constructor)

 

FastICA: a fast algorithm for Independent Component Analysis.

This node has been automatically generated by wrapping the ``sklearn.decomposition.fastica_.FastICA`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

Read more in the :ref:`User Guide <ICA>`.

**Parameters**

n_components : int, optional
    Number of components to use. If none is passed, all are used.

algorithm : {'parallel', 'deflation'}
    Apply parallel or deflational algorithm for FastICA.

whiten : boolean, optional
    If whiten is false, the data is already considered to be
    whitened, and no whitening is performed.

fun : string or function, optional. Default: 'logcosh'
    The functional form of the G function used in the
    approximation to neg-entropy. Could be either 'logcosh', 'exp',
    or 'cube'.
    You can also provide your own function. It should return a tuple
    containing the value of the function, and of its derivative, in the
    point. Example:


    def my_g(x):

        - return x ** 3, 3 * x ** 2


fun_args : dictionary, optional
    Arguments to send to the functional form.
    If empty and if fun='logcosh', fun_args will take value
    {'alpha' : 1.0}.

max_iter : int, optional
    Maximum number of iterations during fit.

tol : float, optional
    Tolerance on update at each iteration.

w_init : None of an (n_components, n_components) ndarray
    The mixing matrix to be used to initialize the algorithm.

random_state : int or RandomState
    Pseudo number generator state used for random sampling.

**Attributes**

``components_`` : 2D array, shape (n_components, n_features)
    The unmixing matrix.

``mixing_`` : array, shape (n_features, n_components)
    The mixing matrix.

``n_iter_`` : int
    If the algorithm is "deflation", n_iter is the
    maximum number of iterations run across all components. Else
    they are just the number of iterations taken to converge.

**Notes**

Implementation based on
`A. Hyvarinen and E. Oja, Independent Component Analysis:

Algorithms and Applications, Neural Networks, 13(4-5), 2000,
pp. 411-430`

Overrides: object.__init__

_execute(self, x)

 
Overrides: Node._execute

_get_supported_dtypes(self)

 
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
Overrides: Node._get_supported_dtypes

_stop_training(self, **kwargs)

 
Concatenate the collected data in a single array.
Overrides: Node._stop_training

execute(self, x)

 

Recover the sources from X (apply the unmixing matrix).

This node has been automatically generated by wrapping the sklearn.decomposition.fastica_.FastICA class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

Parameters

X : array-like, shape (n_samples, n_features)
Data to transform, where n_samples is the number of samples and n_features is the number of features.
copy : bool (optional)
If False, data passed to fit are overwritten. Defaults to True.

Returns

X_new : array-like, shape (n_samples, n_components)

Overrides: Node.execute

is_invertible()
Static Method

 
Return True if the node can be inverted, False otherwise.
Overrides: Node.is_invertible
(inherited documentation)

is_trainable()
Static Method

 
Return True if the node can be trained, False otherwise.
Overrides: Node.is_trainable

stop_training(self, **kwargs)

 

Fit the model to X.

This node has been automatically generated by wrapping the sklearn.decomposition.fastica_.FastICA class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

Parameters

X : array-like, shape (n_samples, n_features)
Training data, where n_samples is the number of samples and n_features is the number of features.

Returns

self

Overrides: Node.stop_training