Package mdp :: Package nodes :: Class ForestRegressorScikitsLearnNode
[hide private]
[frames] | no frames]

Class ForestRegressorScikitsLearnNode


Base class for forest of trees-based regressors.

This node has been automatically generated by wrapping the sklearn.ensemble.forest.ForestRegressor class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

Warning: This class should not be used directly. Use derived classes instead.

Instance Methods [hide private]
 
__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
Base class for forest of trees-based regressors.
 
_execute(self, x)
 
_get_supported_dtypes(self)
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
 
_stop_training(self, **kwargs)
Concatenate the collected data in a single array.
 
execute(self, x)
DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19.
 
stop_training(self, **kwargs)
Build a forest of trees from the training set (X, y).

Inherited from unreachable.newobject: __long__, __native__, __nonzero__, __unicode__, next

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

    Inherited from Cumulator
 
_train(self, *args)
Collect all input data in a list.
 
train(self, *args)
Collect all input data in a list.
    Inherited from Node
 
__add__(self, other)
 
__call__(self, x, *args, **kwargs)
Calling an instance of Node is equivalent to calling its execute method.
 
__repr__(self)
repr(x)
 
__str__(self)
str(x)
 
_check_input(self, x)
 
_check_output(self, y)
 
_check_train_args(self, x, *args, **kwargs)
 
_get_train_seq(self)
 
_if_training_stop_training(self)
 
_inverse(self, x)
 
_pre_execution_checks(self, x)
This method contains all pre-execution checks.
 
_pre_inversion_checks(self, y)
This method contains all pre-inversion checks.
 
_refcast(self, x)
Helper function to cast arrays to the internal dtype.
 
_set_dtype(self, t)
 
_set_input_dim(self, n)
 
_set_output_dim(self, n)
 
copy(self, protocol=None)
Return a deep copy of the node.
 
get_current_train_phase(self)
Return the index of the current training phase.
 
get_dtype(self)
Return dtype.
 
get_input_dim(self)
Return input dimensions.
 
get_output_dim(self)
Return output dimensions.
 
get_remaining_train_phase(self)
Return the number of training phases still to accomplish.
 
get_supported_dtypes(self)
Return dtypes supported by the node as a list of dtype objects.
 
has_multiple_training_phases(self)
Return True if the node has multiple training phases.
 
inverse(self, y, *args, **kwargs)
Invert y.
 
is_training(self)
Return True if the node is in the training phase, False otherwise.
 
save(self, filename, protocol=-1)
Save a pickled serialization of the node to filename. If filename is None, return a string.
 
set_dtype(self, t)
Set internal structures' dtype.
 
set_input_dim(self, n)
Set input dimensions.
 
set_output_dim(self, n)
Set output dimensions.
Static Methods [hide private]
 
is_invertible()
Return True if the node can be inverted, False otherwise.
 
is_trainable()
Return True if the node can be trained, False otherwise.
Properties [hide private]

Inherited from object: __class__

    Inherited from Node
  _train_seq
List of tuples:
  dtype
dtype
  input_dim
Input dimensions
  output_dim
Output dimensions
  supported_dtypes
Supported dtypes
Method Details [hide private]

__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
(Constructor)

 

Base class for forest of trees-based regressors.

This node has been automatically generated by wrapping the sklearn.ensemble.forest.ForestRegressor class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

Warning: This class should not be used directly. Use derived classes instead.

Overrides: object.__init__

_execute(self, x)

 
Overrides: Node._execute

_get_supported_dtypes(self)

 
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
Overrides: Node._get_supported_dtypes

_stop_training(self, **kwargs)

 
Concatenate the collected data in a single array.
Overrides: Node._stop_training

execute(self, x)

 

DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19. Use SelectFromModel instead.

This node has been automatically generated by wrapping the ``sklearn.ensemble.forest.ForestRegressor`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

Reduce X to its most important features.

        Uses ``coef_`` or ``feature_importances_`` to determine the most
        important features.  For models with a ``coef_`` for each class, the
        absolute sum over the classes is used.

        Parameters
        ----------
        X : array or scipy sparse matrix of shape [n_samples, n_features]
            The input samples.

        threshold : string, float or None, optional (default=None)
            The threshold value to use for feature selection. Features whose
            importance is greater or equal are kept while the others are
            discarded. If "median" (resp. "mean"), then the threshold value is
            the median (resp. the mean) of the feature importances. A scaling
            factor (e.g., "1.25*mean") may also be used. If None and if
            available, the object attribute ``threshold`` is used. Otherwise,
            "mean" is used by default.

        Returns
        -------
        X_r : array of shape [n_samples, n_selected_features]
            The input samples with only the selected features.

Overrides: Node.execute

is_invertible()
Static Method

 
Return True if the node can be inverted, False otherwise.
Overrides: Node.is_invertible
(inherited documentation)

is_trainable()
Static Method

 
Return True if the node can be trained, False otherwise.
Overrides: Node.is_trainable

stop_training(self, **kwargs)

 

Build a forest of trees from the training set (X, y).

This node has been automatically generated by wrapping the sklearn.ensemble.forest.ForestRegressor class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

Parameters

X : array-like or sparse matrix of shape = [n_samples, n_features]
The training input samples. Internally, it will be converted to dtype=np.float32 and if a sparse matrix is provided to a sparse csc_matrix.
y : array-like, shape = [n_samples] or [n_samples, n_outputs]
The target values (class labels in classification, real numbers in regression).
sample_weight : array-like, shape = [n_samples] or None
Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. In the case of classification, splits are also ignored if they would result in any single class carrying a negative weight in either child node.

Returns

self : object
Returns self.
Overrides: Node.stop_training