Package mdp :: Package nodes :: Class FunctionTransformerScikitsLearnNode
[hide private]
[frames] | no frames]

Class FunctionTransformerScikitsLearnNode



Constructs a transformer from an arbitrary callable.

This node has been automatically generated by wrapping the ``sklearn.preprocessing._function_transformer.FunctionTransformer`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

A FunctionTransformer forwards its X (and optionally y) arguments to a
user-defined function or function object and returns the result of this
function. This is useful for stateless transformations such as taking the
log of frequencies, doing custom scaling, etc.

A FunctionTransformer will not do any checks on its function's output.

Note: If a lambda is used as the function, then the resulting
transformer will not be pickleable.

.. versionadded:: 0.17

**Parameters**

func : callable, optional default=None
    The callable to use for the transformation. This will be passed
    the same arguments as transform, with args and kwargs forwarded.
    If func is None, then func will be the identity function.

validate : bool, optional default=True
    Indicate that the input X array should be checked before calling
    func. If validate is false, there will be no input validation.
    If it is true, then X will be converted to a 2-dimensional NumPy
    array or sparse matrix. If this conversion is not possible or X
    contains NaN or infinity, an exception is raised.

accept_sparse : boolean, optional
    Indicate that func accepts a sparse matrix as input. If validate is
    False, this has no effect. Otherwise, if accept_sparse is false,
    sparse matrix inputs will cause an exception to be raised.

pass_y: bool, optional default=False
    Indicate that transform should forward the y argument to the
    inner callable.

Instance Methods [hide private]
 
__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
Constructs a transformer from an arbitrary callable.
 
_execute(self, x)
 
_get_supported_dtypes(self)
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
 
_stop_training(self, **kwargs)
Concatenate the collected data in a single array.
 
execute(self, x)
Process the data contained in x.
 
stop_training(self, **kwargs)
Concatenate the collected data in a single array.

Inherited from unreachable.newobject: __long__, __native__, __nonzero__, __unicode__, next

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

    Inherited from Cumulator
 
_train(self, *args)
Collect all input data in a list.
 
train(self, *args)
Collect all input data in a list.
    Inherited from Node
 
__add__(self, other)
 
__call__(self, x, *args, **kwargs)
Calling an instance of Node is equivalent to calling its execute method.
 
__repr__(self)
repr(x)
 
__str__(self)
str(x)
 
_check_input(self, x)
 
_check_output(self, y)
 
_check_train_args(self, x, *args, **kwargs)
 
_get_train_seq(self)
 
_if_training_stop_training(self)
 
_inverse(self, x)
 
_pre_execution_checks(self, x)
This method contains all pre-execution checks.
 
_pre_inversion_checks(self, y)
This method contains all pre-inversion checks.
 
_refcast(self, x)
Helper function to cast arrays to the internal dtype.
 
_set_dtype(self, t)
 
_set_input_dim(self, n)
 
_set_output_dim(self, n)
 
copy(self, protocol=None)
Return a deep copy of the node.
 
get_current_train_phase(self)
Return the index of the current training phase.
 
get_dtype(self)
Return dtype.
 
get_input_dim(self)
Return input dimensions.
 
get_output_dim(self)
Return output dimensions.
 
get_remaining_train_phase(self)
Return the number of training phases still to accomplish.
 
get_supported_dtypes(self)
Return dtypes supported by the node as a list of dtype objects.
 
has_multiple_training_phases(self)
Return True if the node has multiple training phases.
 
inverse(self, y, *args, **kwargs)
Invert y.
 
is_training(self)
Return True if the node is in the training phase, False otherwise.
 
save(self, filename, protocol=-1)
Save a pickled serialization of the node to filename. If filename is None, return a string.
 
set_dtype(self, t)
Set internal structures' dtype.
 
set_input_dim(self, n)
Set input dimensions.
 
set_output_dim(self, n)
Set output dimensions.
Static Methods [hide private]
 
is_invertible()
Return True if the node can be inverted, False otherwise.
 
is_trainable()
Return True if the node can be trained, False otherwise.
Properties [hide private]

Inherited from object: __class__

    Inherited from Node
  _train_seq
List of tuples:
  dtype
dtype
  input_dim
Input dimensions
  output_dim
Output dimensions
  supported_dtypes
Supported dtypes
Method Details [hide private]

__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
(Constructor)

 

Constructs a transformer from an arbitrary callable.

This node has been automatically generated by wrapping the ``sklearn.preprocessing._function_transformer.FunctionTransformer`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

A FunctionTransformer forwards its X (and optionally y) arguments to a
user-defined function or function object and returns the result of this
function. This is useful for stateless transformations such as taking the
log of frequencies, doing custom scaling, etc.

A FunctionTransformer will not do any checks on its function's output.

Note: If a lambda is used as the function, then the resulting
transformer will not be pickleable.

.. versionadded:: 0.17

**Parameters**

func : callable, optional default=None
    The callable to use for the transformation. This will be passed
    the same arguments as transform, with args and kwargs forwarded.
    If func is None, then func will be the identity function.

validate : bool, optional default=True
    Indicate that the input X array should be checked before calling
    func. If validate is false, there will be no input validation.
    If it is true, then X will be converted to a 2-dimensional NumPy
    array or sparse matrix. If this conversion is not possible or X
    contains NaN or infinity, an exception is raised.

accept_sparse : boolean, optional
    Indicate that func accepts a sparse matrix as input. If validate is
    False, this has no effect. Otherwise, if accept_sparse is false,
    sparse matrix inputs will cause an exception to be raised.

pass_y: bool, optional default=False
    Indicate that transform should forward the y argument to the
    inner callable.

Overrides: object.__init__

_execute(self, x)

 
Overrides: Node._execute

_get_supported_dtypes(self)

 
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
Overrides: Node._get_supported_dtypes

_stop_training(self, **kwargs)

 
Concatenate the collected data in a single array.
Overrides: Node._stop_training

execute(self, x)

 

Process the data contained in x.

If the object is still in the training phase, the function stop_training will be called. x is a matrix having different variables on different columns and observations on the rows.

By default, subclasses should overwrite _execute to implement their execution phase. The docstring of the _execute method overwrites this docstring.

Overrides: Node.execute
(inherited documentation)

is_invertible()
Static Method

 
Return True if the node can be inverted, False otherwise.
Overrides: Node.is_invertible
(inherited documentation)

is_trainable()
Static Method

 
Return True if the node can be trained, False otherwise.
Overrides: Node.is_trainable

stop_training(self, **kwargs)

 
Concatenate the collected data in a single array.
Overrides: Node.stop_training
(inherited documentation)