Perform a Hessian Locally Linear Embedding analysis on the data.
Implementation based on algorithm outlined in
Donoho, D. L., and Grimes, C., Hessian Eigenmaps: new locally linear
embedding techniques for high-dimensional data, Proceedings of the
National Academy of Sciences 100(10): 5591-5596, 2003.
|
__init__(self,
k,
r=0.001,
svd=False,
verbose=False,
input_dim=None,
output_dim=None,
dtype=None)
If the input dimension and the output dimension are
unspecified, they will be set when the train or execute
method is called for the first time.
If dtype is unspecified, it will be inherited from the data
it receives at the first call of train or execute. |
|
|
|
_stop_training(self)
Concatenate the collected data in a single array. |
|
|
|
stop_training(self)
Concatenate the collected data in a single array. |
|
|
Inherited from unreachable.newobject :
__long__ ,
__native__ ,
__nonzero__ ,
__unicode__ ,
next
Inherited from object :
__delattr__ ,
__format__ ,
__getattribute__ ,
__hash__ ,
__new__ ,
__reduce__ ,
__reduce_ex__ ,
__setattr__ ,
__sizeof__ ,
__subclasshook__
|
|
|
|
|
|
execute(self,
x)
Process the data contained in x . |
|
|
|
_train(self,
*args)
Collect all input data in a list. |
|
|
|
train(self,
*args)
Collect all input data in a list. |
|
|
|
|
|
__call__(self,
x,
*args,
**kwargs)
Calling an instance of Node is equivalent to calling
its execute method. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_refcast(self,
x)
Helper function to cast arrays to the internal dtype. |
|
|
|
|
|
|
|
|
|
copy(self,
protocol=None)
Return a deep copy of the node. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inverse(self,
y,
*args,
**kwargs)
Invert y . |
|
|
|
is_training(self)
Return True if the node is in the training phase,
False otherwise. |
|
|
|
save(self,
filename,
protocol=-1)
Save a pickled serialization of the node to filename .
If filename is None, return a string. |
|
|
|
set_dtype(self,
t)
Set internal structures' dtype. |
|
|
|
|
|
|