Package mdp :: Package nodes :: Class HitParadeNode
[hide private]
[frames] | no frames]

Class HitParadeNode


Collect the first n local maxima and minima of the training signal which are separated by a minimum gap d.

This is an analysis node, i.e. the data is analyzed during training and the results are stored internally. Use the get_maxima and get_minima methods to access them.

Instance Methods [hide private]
 
__init__(self, n, d=1, input_dim=None, output_dim=None, dtype=None)
Input arguments: n -- Number of maxima and minima to store d -- Minimum gap between two maxima or two minima
 
_get_supported_dtypes(self)
Return the list of dtypes supported by this node.
 
_set_input_dim(self, n)
 
_train(self, x)
 
get_maxima(self)
Return the tuple (maxima, indices). Maxima are sorted in descending order.
 
get_minima(self)
Return the tuple (minima, indices). Minima are sorted in ascending order.
 
train(self, x)
Update the internal structures according to the input data x.

Inherited from PreserveDimNode (private): _set_output_dim

Inherited from unreachable.newobject: __long__, __native__, __nonzero__, __unicode__, next

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

    Inherited from Node
 
__add__(self, other)
 
__call__(self, x, *args, **kwargs)
Calling an instance of Node is equivalent to calling its execute method.
 
__repr__(self)
repr(x)
 
__str__(self)
str(x)
 
_check_input(self, x)
 
_check_output(self, y)
 
_check_train_args(self, x, *args, **kwargs)
 
_execute(self, x)
 
_get_train_seq(self)
 
_if_training_stop_training(self)
 
_inverse(self, x)
 
_pre_execution_checks(self, x)
This method contains all pre-execution checks.
 
_pre_inversion_checks(self, y)
This method contains all pre-inversion checks.
 
_refcast(self, x)
Helper function to cast arrays to the internal dtype.
 
_set_dtype(self, t)
 
_stop_training(self, *args, **kwargs)
 
copy(self, protocol=None)
Return a deep copy of the node.
 
execute(self, x, *args, **kwargs)
Process the data contained in x.
 
get_current_train_phase(self)
Return the index of the current training phase.
 
get_dtype(self)
Return dtype.
 
get_input_dim(self)
Return input dimensions.
 
get_output_dim(self)
Return output dimensions.
 
get_remaining_train_phase(self)
Return the number of training phases still to accomplish.
 
get_supported_dtypes(self)
Return dtypes supported by the node as a list of dtype objects.
 
has_multiple_training_phases(self)
Return True if the node has multiple training phases.
 
inverse(self, y, *args, **kwargs)
Invert y.
 
is_training(self)
Return True if the node is in the training phase, False otherwise.
 
save(self, filename, protocol=-1)
Save a pickled serialization of the node to filename. If filename is None, return a string.
 
set_dtype(self, t)
Set internal structures' dtype.
 
set_input_dim(self, n)
Set input dimensions.
 
set_output_dim(self, n)
Set output dimensions.
 
stop_training(self, *args, **kwargs)
Stop the training phase.
Static Methods [hide private]
    Inherited from Node
 
is_invertible()
Return True if the node can be inverted, False otherwise.
 
is_trainable()
Return True if the node can be trained, False otherwise.
Properties [hide private]

Inherited from object: __class__

    Inherited from Node
  _train_seq
List of tuples:
  dtype
dtype
  input_dim
Input dimensions
  output_dim
Output dimensions
  supported_dtypes
Supported dtypes
Method Details [hide private]

__init__(self, n, d=1, input_dim=None, output_dim=None, dtype=None)
(Constructor)

 
Input arguments: n -- Number of maxima and minima to store d -- Minimum gap between two maxima or two minima
Overrides: object.__init__

_get_supported_dtypes(self)

 
Return the list of dtypes supported by this node.
Overrides: Node._get_supported_dtypes

_set_input_dim(self, n)

 
Overrides: Node._set_input_dim

_train(self, x)

 
Overrides: Node._train

get_maxima(self)

 

Return the tuple (maxima, indices). Maxima are sorted in descending order.

If the training phase has not been completed yet, call stop_training.

get_minima(self)

 

Return the tuple (minima, indices). Minima are sorted in ascending order.

If the training phase has not been completed yet, call stop_training.

train(self, x)

 

Update the internal structures according to the input data x.

x is a matrix having different variables on different columns and observations on the rows.

By default, subclasses should overwrite _train to implement their training phase. The docstring of the _train method overwrites this docstring.

Note: a subclass supporting multiple training phases should implement the same signature for all the training phases and document the meaning of the arguments in the _train method doc-string. Having consistent signatures is a requirement to use the node in a flow.

Overrides: Node.train