Home | Trees | Indices | Help |
|
---|
|
Imputation transformer for completing missing values. This node has been automatically generated by wrapping the ``sklearn.preprocessing.imputation.Imputer`` class from the ``sklearn`` library. The wrapped instance can be accessed through the ``scikits_alg`` attribute. Read more in the :ref:`User Guide <imputation>`. **Parameters** missing_values : integer or "NaN", optional (default="NaN") The placeholder for the missing values. All occurrences of `missing_values` will be imputed. For missing values encoded as np.nan, use the string value "NaN". strategy : string, optional (default="mean") The imputation strategy. - If "mean", then replace missing values using the mean along the axis. - If "median", then replace missing values using the median along the axis. - If "most_frequent", then replace missing using the most frequent value along the axis. axis : integer, optional (default=0) The axis along which to impute. - If `axis=0`, then impute along columns. - If `axis=1`, then impute along rows. verbose : integer, optional (default=0) Controls the verbosity of the imputer. copy : boolean, optional (default=True) If True, a copy of X will be created. If False, imputation will be done in-place whenever possible. Note that, in the following cases, a new copy will always be made, even if `copy=False`: - If X is not an array of floating values; - If X is sparse and `missing_values=0`; - If `axis=0` and X is encoded as a CSR matrix; - If `axis=1` and X is encoded as a CSC matrix. **Attributes** ``statistics_`` : array of shape (n_features,) The imputation fill value for each feature if axis == 0. **Notes** - When ``axis=0``, columns which only contained missing values at `fit` are discarded upon `transform`. - When ``axis=1``, an exception is raised if there are rows for which it is not possible to fill in the missing values (e.g., because they only contain missing values).
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
Inherited from Inherited from |
|||
Inherited from Cumulator | |||
---|---|---|---|
|
|||
|
|||
Inherited from Node | |||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|
|||
|
|||
|
|
|||
Inherited from |
|||
Inherited from Node | |||
---|---|---|---|
_train_seq List of tuples: |
|||
dtype dtype |
|||
input_dim Input dimensions |
|||
output_dim Output dimensions |
|||
supported_dtypes Supported dtypes |
|
Imputation transformer for completing missing values. This node has been automatically generated by wrapping the ``sklearn.preprocessing.imputation.Imputer`` class from the ``sklearn`` library. The wrapped instance can be accessed through the ``scikits_alg`` attribute. Read more in the :ref:`User Guide <imputation>`. **Parameters** missing_values : integer or "NaN", optional (default="NaN") The placeholder for the missing values. All occurrences of `missing_values` will be imputed. For missing values encoded as np.nan, use the string value "NaN". strategy : string, optional (default="mean") The imputation strategy. - If "mean", then replace missing values using the mean along the axis. - If "median", then replace missing values using the median along the axis. - If "most_frequent", then replace missing using the most frequent value along the axis. axis : integer, optional (default=0) The axis along which to impute. - If `axis=0`, then impute along columns. - If `axis=1`, then impute along rows. verbose : integer, optional (default=0) Controls the verbosity of the imputer. copy : boolean, optional (default=True) If True, a copy of X will be created. If False, imputation will be done in-place whenever possible. Note that, in the following cases, a new copy will always be made, even if `copy=False`: - If X is not an array of floating values; - If X is sparse and `missing_values=0`; - If `axis=0` and X is encoded as a CSR matrix; - If `axis=1` and X is encoded as a CSC matrix. **Attributes** ``statistics_`` : array of shape (n_features,) The imputation fill value for each feature if axis == 0. **Notes** - When ``axis=0``, columns which only contained missing values at `fit` are discarded upon `transform`. - When ``axis=1``, an exception is raised if there are rows for which it is not possible to fill in the missing values (e.g., because they only contain missing values).
|
|
|
|
Impute all missing values in X. This node has been automatically generated by wrapping the sklearn.preprocessing.imputation.Imputer class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters
|
|
|
Fit the imputer on X. This node has been automatically generated by wrapping the sklearn.preprocessing.imputation.Imputer class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters
Returns
|
Home | Trees | Indices | Help |
|
---|
Generated by Epydoc 3.0.1 on Tue Mar 8 12:39:48 2016 | http://epydoc.sourceforge.net |