Package mdp :: Package nodes :: Class IsomapScikitsLearnNode
[hide private]
[frames] | no frames]

Class IsomapScikitsLearnNode



Isomap Embedding

This node has been automatically generated by wrapping the ``sklearn.manifold.isomap.Isomap`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

Non-linear dimensionality reduction through Isometric Mapping

Read more in the :ref:`User Guide <isomap>`.

**Parameters**

n_neighbors : integer
    number of neighbors to consider for each point.

n_components : integer
    number of coordinates for the manifold

eigen_solver : ['auto'|'arpack'|'dense']
    'auto' : Attempt to choose the most efficient solver
    for the given problem.

    'arpack' : Use Arnoldi decomposition to find the eigenvalues
    and eigenvectors.

    'dense' : Use a direct solver (i.e. LAPACK)
    for the eigenvalue decomposition.

tol : float
    Convergence tolerance passed to arpack or lobpcg.
    not used if eigen_solver == 'dense'.

max_iter : integer
    Maximum number of iterations for the arpack solver.
    not used if eigen_solver == 'dense'.

path_method : string ['auto'|'FW'|'D']
    Method to use in finding shortest path.

    'auto' : attempt to choose the best algorithm automatically.

    'FW' : Floyd-Warshall algorithm.

    'D' : Dijkstra's algorithm.

neighbors_algorithm : string ['auto'|'brute'|'kd_tree'|'ball_tree']
    Algorithm to use for nearest neighbors search,
    passed to neighbors.NearestNeighbors instance.

**Attributes**

``embedding_`` : array-like, shape (n_samples, n_components)
    Stores the embedding vectors.

``kernel_pca_`` : object
    `KernelPCA` object used to implement the embedding.

``training_data_`` : array-like, shape (n_samples, n_features)
    Stores the training data.

``nbrs_`` : sklearn.neighbors.NearestNeighbors instance
    Stores nearest neighbors instance, including BallTree or KDtree
    if applicable.

``dist_matrix_`` : array-like, shape (n_samples, n_samples)
    Stores the geodesic distance matrix of training data.

**References**


.. [1] Tenenbaum, J.B.; De Silva, V.; & Langford, J.C. A global geometric
       framework for nonlinear dimensionality reduction. Science 290 (5500)

Instance Methods [hide private]
 
__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
Isomap Embedding
 
_execute(self, x)
 
_get_supported_dtypes(self)
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
 
_stop_training(self, **kwargs)
Concatenate the collected data in a single array.
 
execute(self, x)
Transform X.
 
stop_training(self, **kwargs)
Compute the embedding vectors for data X

Inherited from unreachable.newobject: __long__, __native__, __nonzero__, __unicode__, next

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

    Inherited from Cumulator
 
_train(self, *args)
Collect all input data in a list.
 
train(self, *args)
Collect all input data in a list.
    Inherited from Node
 
__add__(self, other)
 
__call__(self, x, *args, **kwargs)
Calling an instance of Node is equivalent to calling its execute method.
 
__repr__(self)
repr(x)
 
__str__(self)
str(x)
 
_check_input(self, x)
 
_check_output(self, y)
 
_check_train_args(self, x, *args, **kwargs)
 
_get_train_seq(self)
 
_if_training_stop_training(self)
 
_inverse(self, x)
 
_pre_execution_checks(self, x)
This method contains all pre-execution checks.
 
_pre_inversion_checks(self, y)
This method contains all pre-inversion checks.
 
_refcast(self, x)
Helper function to cast arrays to the internal dtype.
 
_set_dtype(self, t)
 
_set_input_dim(self, n)
 
_set_output_dim(self, n)
 
copy(self, protocol=None)
Return a deep copy of the node.
 
get_current_train_phase(self)
Return the index of the current training phase.
 
get_dtype(self)
Return dtype.
 
get_input_dim(self)
Return input dimensions.
 
get_output_dim(self)
Return output dimensions.
 
get_remaining_train_phase(self)
Return the number of training phases still to accomplish.
 
get_supported_dtypes(self)
Return dtypes supported by the node as a list of dtype objects.
 
has_multiple_training_phases(self)
Return True if the node has multiple training phases.
 
inverse(self, y, *args, **kwargs)
Invert y.
 
is_training(self)
Return True if the node is in the training phase, False otherwise.
 
save(self, filename, protocol=-1)
Save a pickled serialization of the node to filename. If filename is None, return a string.
 
set_dtype(self, t)
Set internal structures' dtype.
 
set_input_dim(self, n)
Set input dimensions.
 
set_output_dim(self, n)
Set output dimensions.
Static Methods [hide private]
 
is_invertible()
Return True if the node can be inverted, False otherwise.
 
is_trainable()
Return True if the node can be trained, False otherwise.
Properties [hide private]

Inherited from object: __class__

    Inherited from Node
  _train_seq
List of tuples:
  dtype
dtype
  input_dim
Input dimensions
  output_dim
Output dimensions
  supported_dtypes
Supported dtypes
Method Details [hide private]

__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
(Constructor)

 

Isomap Embedding

This node has been automatically generated by wrapping the ``sklearn.manifold.isomap.Isomap`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

Non-linear dimensionality reduction through Isometric Mapping

Read more in the :ref:`User Guide <isomap>`.

**Parameters**

n_neighbors : integer
    number of neighbors to consider for each point.

n_components : integer
    number of coordinates for the manifold

eigen_solver : ['auto'|'arpack'|'dense']
    'auto' : Attempt to choose the most efficient solver
    for the given problem.

    'arpack' : Use Arnoldi decomposition to find the eigenvalues
    and eigenvectors.

    'dense' : Use a direct solver (i.e. LAPACK)
    for the eigenvalue decomposition.

tol : float
    Convergence tolerance passed to arpack or lobpcg.
    not used if eigen_solver == 'dense'.

max_iter : integer
    Maximum number of iterations for the arpack solver.
    not used if eigen_solver == 'dense'.

path_method : string ['auto'|'FW'|'D']
    Method to use in finding shortest path.

    'auto' : attempt to choose the best algorithm automatically.

    'FW' : Floyd-Warshall algorithm.

    'D' : Dijkstra's algorithm.

neighbors_algorithm : string ['auto'|'brute'|'kd_tree'|'ball_tree']
    Algorithm to use for nearest neighbors search,
    passed to neighbors.NearestNeighbors instance.

**Attributes**

``embedding_`` : array-like, shape (n_samples, n_components)
    Stores the embedding vectors.

``kernel_pca_`` : object
    `KernelPCA` object used to implement the embedding.

``training_data_`` : array-like, shape (n_samples, n_features)
    Stores the training data.

``nbrs_`` : sklearn.neighbors.NearestNeighbors instance
    Stores nearest neighbors instance, including BallTree or KDtree
    if applicable.

``dist_matrix_`` : array-like, shape (n_samples, n_samples)
    Stores the geodesic distance matrix of training data.

**References**


.. [1] Tenenbaum, J.B.; De Silva, V.; & Langford, J.C. A global geometric
       framework for nonlinear dimensionality reduction. Science 290 (5500)

Overrides: object.__init__

_execute(self, x)

 
Overrides: Node._execute

_get_supported_dtypes(self)

 
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
Overrides: Node._get_supported_dtypes

_stop_training(self, **kwargs)

 
Concatenate the collected data in a single array.
Overrides: Node._stop_training

execute(self, x)

 

Transform X.

This node has been automatically generated by wrapping the sklearn.manifold.isomap.Isomap class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

This is implemented by linking the points X into the graph of geodesic distances of the training data. First the n_neighbors nearest neighbors of X are found in the training data, and from these the shortest geodesic distances from each point in X to each point in the training data are computed in order to construct the kernel. The embedding of X is the projection of this kernel onto the embedding vectors of the training set.

Parameters

X: array-like, shape (n_samples, n_features)

Returns

X_new: array-like, shape (n_samples, n_components)

Overrides: Node.execute

is_invertible()
Static Method

 
Return True if the node can be inverted, False otherwise.
Overrides: Node.is_invertible
(inherited documentation)

is_trainable()
Static Method

 
Return True if the node can be trained, False otherwise.
Overrides: Node.is_trainable

stop_training(self, **kwargs)

 

Compute the embedding vectors for data X

This node has been automatically generated by wrapping the sklearn.manifold.isomap.Isomap class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

Parameters

X : {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors}
Sample data, shape = (n_samples, n_features), in the form of a numpy array, precomputed tree, or NearestNeighbors object.

Returns

self : returns an instance of self.

Overrides: Node.stop_training