Home | Trees | Indices | Help |
|
---|
|
Isomap Embedding This node has been automatically generated by wrapping the ``sklearn.manifold.isomap.Isomap`` class from the ``sklearn`` library. The wrapped instance can be accessed through the ``scikits_alg`` attribute. Non-linear dimensionality reduction through Isometric Mapping Read more in the :ref:`User Guide <isomap>`. **Parameters** n_neighbors : integer number of neighbors to consider for each point. n_components : integer number of coordinates for the manifold eigen_solver : ['auto'|'arpack'|'dense'] 'auto' : Attempt to choose the most efficient solver for the given problem. 'arpack' : Use Arnoldi decomposition to find the eigenvalues and eigenvectors. 'dense' : Use a direct solver (i.e. LAPACK) for the eigenvalue decomposition. tol : float Convergence tolerance passed to arpack or lobpcg. not used if eigen_solver == 'dense'. max_iter : integer Maximum number of iterations for the arpack solver. not used if eigen_solver == 'dense'. path_method : string ['auto'|'FW'|'D'] Method to use in finding shortest path. 'auto' : attempt to choose the best algorithm automatically. 'FW' : Floyd-Warshall algorithm. 'D' : Dijkstra's algorithm. neighbors_algorithm : string ['auto'|'brute'|'kd_tree'|'ball_tree'] Algorithm to use for nearest neighbors search, passed to neighbors.NearestNeighbors instance. **Attributes** ``embedding_`` : array-like, shape (n_samples, n_components) Stores the embedding vectors. ``kernel_pca_`` : object `KernelPCA` object used to implement the embedding. ``training_data_`` : array-like, shape (n_samples, n_features) Stores the training data. ``nbrs_`` : sklearn.neighbors.NearestNeighbors instance Stores nearest neighbors instance, including BallTree or KDtree if applicable. ``dist_matrix_`` : array-like, shape (n_samples, n_samples) Stores the geodesic distance matrix of training data. **References** .. [1] Tenenbaum, J.B.; De Silva, V.; & Langford, J.C. A global geometric framework for nonlinear dimensionality reduction. Science 290 (5500)
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
Inherited from Inherited from |
|||
Inherited from Cumulator | |||
---|---|---|---|
|
|||
|
|||
Inherited from Node | |||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|
|||
|
|||
|
|
|||
Inherited from |
|||
Inherited from Node | |||
---|---|---|---|
_train_seq List of tuples: |
|||
dtype dtype |
|||
input_dim Input dimensions |
|||
output_dim Output dimensions |
|||
supported_dtypes Supported dtypes |
|
Isomap Embedding This node has been automatically generated by wrapping the ``sklearn.manifold.isomap.Isomap`` class from the ``sklearn`` library. The wrapped instance can be accessed through the ``scikits_alg`` attribute. Non-linear dimensionality reduction through Isometric Mapping Read more in the :ref:`User Guide <isomap>`. **Parameters** n_neighbors : integer number of neighbors to consider for each point. n_components : integer number of coordinates for the manifold eigen_solver : ['auto'|'arpack'|'dense'] 'auto' : Attempt to choose the most efficient solver for the given problem. 'arpack' : Use Arnoldi decomposition to find the eigenvalues and eigenvectors. 'dense' : Use a direct solver (i.e. LAPACK) for the eigenvalue decomposition. tol : float Convergence tolerance passed to arpack or lobpcg. not used if eigen_solver == 'dense'. max_iter : integer Maximum number of iterations for the arpack solver. not used if eigen_solver == 'dense'. path_method : string ['auto'|'FW'|'D'] Method to use in finding shortest path. 'auto' : attempt to choose the best algorithm automatically. 'FW' : Floyd-Warshall algorithm. 'D' : Dijkstra's algorithm. neighbors_algorithm : string ['auto'|'brute'|'kd_tree'|'ball_tree'] Algorithm to use for nearest neighbors search, passed to neighbors.NearestNeighbors instance. **Attributes** ``embedding_`` : array-like, shape (n_samples, n_components) Stores the embedding vectors. ``kernel_pca_`` : object `KernelPCA` object used to implement the embedding. ``training_data_`` : array-like, shape (n_samples, n_features) Stores the training data. ``nbrs_`` : sklearn.neighbors.NearestNeighbors instance Stores nearest neighbors instance, including BallTree or KDtree if applicable. ``dist_matrix_`` : array-like, shape (n_samples, n_samples) Stores the geodesic distance matrix of training data. **References** .. [1] Tenenbaum, J.B.; De Silva, V.; & Langford, J.C. A global geometric framework for nonlinear dimensionality reduction. Science 290 (5500)
|
|
|
|
Transform X. This node has been automatically generated by wrapping the sklearn.manifold.isomap.Isomap class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. This is implemented by linking the points X into the graph of geodesic
distances of the training data. First the Parameters X: array-like, shape (n_samples, n_features) Returns X_new: array-like, shape (n_samples, n_components)
|
|
|
Compute the embedding vectors for data X This node has been automatically generated by wrapping the sklearn.manifold.isomap.Isomap class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters
Returns self : returns an instance of self.
|
Home | Trees | Indices | Help |
|
---|
Generated by Epydoc 3.0.1 on Tue Mar 8 12:39:48 2016 | http://epydoc.sourceforge.net |