| Home | Trees | Indices | Help |
|
|---|
|
|
Isomap Embedding
This node has been automatically generated by wrapping the ``sklearn.manifold.isomap.Isomap`` class
from the ``sklearn`` library. The wrapped instance can be accessed
through the ``scikits_alg`` attribute.
Non-linear dimensionality reduction through Isometric Mapping
Read more in the :ref:`User Guide <isomap>`.
**Parameters**
n_neighbors : integer
number of neighbors to consider for each point.
n_components : integer
number of coordinates for the manifold
eigen_solver : ['auto'|'arpack'|'dense']
'auto' : Attempt to choose the most efficient solver
for the given problem.
'arpack' : Use Arnoldi decomposition to find the eigenvalues
and eigenvectors.
'dense' : Use a direct solver (i.e. LAPACK)
for the eigenvalue decomposition.
tol : float
Convergence tolerance passed to arpack or lobpcg.
not used if eigen_solver == 'dense'.
max_iter : integer
Maximum number of iterations for the arpack solver.
not used if eigen_solver == 'dense'.
path_method : string ['auto'|'FW'|'D']
Method to use in finding shortest path.
'auto' : attempt to choose the best algorithm automatically.
'FW' : Floyd-Warshall algorithm.
'D' : Dijkstra's algorithm.
neighbors_algorithm : string ['auto'|'brute'|'kd_tree'|'ball_tree']
Algorithm to use for nearest neighbors search,
passed to neighbors.NearestNeighbors instance.
**Attributes**
``embedding_`` : array-like, shape (n_samples, n_components)
Stores the embedding vectors.
``kernel_pca_`` : object
`KernelPCA` object used to implement the embedding.
``training_data_`` : array-like, shape (n_samples, n_features)
Stores the training data.
``nbrs_`` : sklearn.neighbors.NearestNeighbors instance
Stores nearest neighbors instance, including BallTree or KDtree
if applicable.
``dist_matrix_`` : array-like, shape (n_samples, n_samples)
Stores the geodesic distance matrix of training data.
**References**
.. [1] Tenenbaum, J.B.; De Silva, V.; & Langford, J.C. A global geometric
framework for nonlinear dimensionality reduction. Science 290 (5500)
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
Inherited from Inherited from |
|||
| Inherited from Cumulator | |||
|---|---|---|---|
|
|||
|
|||
| Inherited from Node | |||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
Inherited from |
|||
| Inherited from Node | |||
|---|---|---|---|
|
_train_seq List of tuples: |
|||
|
dtype dtype |
|||
|
input_dim Input dimensions |
|||
|
output_dim Output dimensions |
|||
|
supported_dtypes Supported dtypes |
|||
|
|||
Isomap Embedding
This node has been automatically generated by wrapping the ``sklearn.manifold.isomap.Isomap`` class
from the ``sklearn`` library. The wrapped instance can be accessed
through the ``scikits_alg`` attribute.
Non-linear dimensionality reduction through Isometric Mapping
Read more in the :ref:`User Guide <isomap>`.
**Parameters**
n_neighbors : integer
number of neighbors to consider for each point.
n_components : integer
number of coordinates for the manifold
eigen_solver : ['auto'|'arpack'|'dense']
'auto' : Attempt to choose the most efficient solver
for the given problem.
'arpack' : Use Arnoldi decomposition to find the eigenvalues
and eigenvectors.
'dense' : Use a direct solver (i.e. LAPACK)
for the eigenvalue decomposition.
tol : float
Convergence tolerance passed to arpack or lobpcg.
not used if eigen_solver == 'dense'.
max_iter : integer
Maximum number of iterations for the arpack solver.
not used if eigen_solver == 'dense'.
path_method : string ['auto'|'FW'|'D']
Method to use in finding shortest path.
'auto' : attempt to choose the best algorithm automatically.
'FW' : Floyd-Warshall algorithm.
'D' : Dijkstra's algorithm.
neighbors_algorithm : string ['auto'|'brute'|'kd_tree'|'ball_tree']
Algorithm to use for nearest neighbors search,
passed to neighbors.NearestNeighbors instance.
**Attributes**
``embedding_`` : array-like, shape (n_samples, n_components)
Stores the embedding vectors.
``kernel_pca_`` : object
`KernelPCA` object used to implement the embedding.
``training_data_`` : array-like, shape (n_samples, n_features)
Stores the training data.
``nbrs_`` : sklearn.neighbors.NearestNeighbors instance
Stores nearest neighbors instance, including BallTree or KDtree
if applicable.
``dist_matrix_`` : array-like, shape (n_samples, n_samples)
Stores the geodesic distance matrix of training data.
**References**
.. [1] Tenenbaum, J.B.; De Silva, V.; & Langford, J.C. A global geometric
framework for nonlinear dimensionality reduction. Science 290 (5500)
|
|
|
|
Transform X. This node has been automatically generated by wrapping the sklearn.manifold.isomap.Isomap class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. This is implemented by linking the points X into the graph of geodesic
distances of the training data. First the Parameters X: array-like, shape (n_samples, n_features) Returns X_new: array-like, shape (n_samples, n_components)
|
|
|
Compute the embedding vectors for data X This node has been automatically generated by wrapping the sklearn.manifold.isomap.Isomap class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters
Returns self : returns an instance of self.
|
| Home | Trees | Indices | Help |
|
|---|
| Generated by Epydoc 3.0.1 on Tue Mar 8 12:39:48 2016 | http://epydoc.sourceforge.net |