Home | Trees | Indices | Help |
|
---|
|
Isotonic regression model. This node has been automatically generated by wrapping the ``sklearn.isotonic.IsotonicRegression`` class from the ``sklearn`` library. The wrapped instance can be accessed through the ``scikits_alg`` attribute. The isotonic regression optimization problem is defined by:: min sum w_i (y[i] - y_[i]) ** 2 subject to y_[i] <= y_[j] whenever X[i] <= X[j] and min(y_) = y_min, max(y_) = y_max where: - - ``y[i]`` are inputs (real numbers) - - ``y_[i]`` are fitted - - ``X`` specifies the order. - If ``X`` is non-decreasing then ``y_`` is non-decreasing. - - ``w[i]`` are optional strictly positive weights (default to 1.0) Read more in the :ref:`User Guide <isotonic>`. **Parameters** y_min : optional, default: None If not None, set the lowest value of the fit to y_min. y_max : optional, default: None If not None, set the highest value of the fit to y_max. increasing : boolean or string, optional, default: True If boolean, whether or not to fit the isotonic regression with y increasing or decreasing. The string value "auto" determines whether y should increase or decrease based on the Spearman correlation estimate's sign. out_of_bounds : string, optional, default: "nan" The ``out_of_bounds`` parameter handles how x-values outside of the training domain are handled. When set to "nan", predicted y-values will be NaN. When set to "clip", predicted y-values will be set to the value corresponding to the nearest train interval endpoint. When set to "raise", allow ``interp1d`` to throw ValueError. **Attributes** ``X_`` : ndarray (n_samples, ) A copy of the input X. ``y_`` : ndarray (n_samples, ) Isotonic fit of y. ``X_min_`` : float Minimum value of input array `X_` for left bound. ``X_max_`` : float Maximum value of input array `X_` for right bound. ``f_`` : function The stepwise interpolating function that covers the domain `X_`. **Notes** Ties are broken using the secondary method from Leeuw, 1977. **References** Isotonic Median Regression: A Linear Programming Approach Nilotpal Chakravarti Mathematics of Operations Research Vol. 14, No. 2 (May, 1989), pp. 303-308 Isotone Optimization in R : Pool-Adjacent-Violators Algorithm (PAVA) and Active Set Methods Leeuw, Hornik, Mair Journal of Statistical Software 2009 Correctness of Kruskal's algorithms for monotone regression with ties Leeuw, Psychometrica, 1977
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
Inherited from Inherited from |
|||
Inherited from Cumulator | |||
---|---|---|---|
|
|||
|
|||
Inherited from Node | |||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|
|||
|
|||
|
|
|||
Inherited from |
|||
Inherited from Node | |||
---|---|---|---|
_train_seq List of tuples: |
|||
dtype dtype |
|||
input_dim Input dimensions |
|||
output_dim Output dimensions |
|||
supported_dtypes Supported dtypes |
|
Isotonic regression model. This node has been automatically generated by wrapping the ``sklearn.isotonic.IsotonicRegression`` class from the ``sklearn`` library. The wrapped instance can be accessed through the ``scikits_alg`` attribute. The isotonic regression optimization problem is defined by:: min sum w_i (y[i] - y_[i]) ** 2 subject to y_[i] <= y_[j] whenever X[i] <= X[j] and min(y_) = y_min, max(y_) = y_max where: - - ``y[i]`` are inputs (real numbers) - - ``y_[i]`` are fitted - - ``X`` specifies the order. - If ``X`` is non-decreasing then ``y_`` is non-decreasing. - - ``w[i]`` are optional strictly positive weights (default to 1.0) Read more in the :ref:`User Guide <isotonic>`. **Parameters** y_min : optional, default: None If not None, set the lowest value of the fit to y_min. y_max : optional, default: None If not None, set the highest value of the fit to y_max. increasing : boolean or string, optional, default: True If boolean, whether or not to fit the isotonic regression with y increasing or decreasing. The string value "auto" determines whether y should increase or decrease based on the Spearman correlation estimate's sign. out_of_bounds : string, optional, default: "nan" The ``out_of_bounds`` parameter handles how x-values outside of the training domain are handled. When set to "nan", predicted y-values will be NaN. When set to "clip", predicted y-values will be set to the value corresponding to the nearest train interval endpoint. When set to "raise", allow ``interp1d`` to throw ValueError. **Attributes** ``X_`` : ndarray (n_samples, ) A copy of the input X. ``y_`` : ndarray (n_samples, ) Isotonic fit of y. ``X_min_`` : float Minimum value of input array `X_` for left bound. ``X_max_`` : float Maximum value of input array `X_` for right bound. ``f_`` : function The stepwise interpolating function that covers the domain `X_`. **Notes** Ties are broken using the secondary method from Leeuw, 1977. **References** Isotonic Median Regression: A Linear Programming Approach Nilotpal Chakravarti Mathematics of Operations Research Vol. 14, No. 2 (May, 1989), pp. 303-308 Isotone Optimization in R : Pool-Adjacent-Violators Algorithm (PAVA) and Active Set Methods Leeuw, Hornik, Mair Journal of Statistical Software 2009 Correctness of Kruskal's algorithms for monotone regression with ties Leeuw, Psychometrica, 1977
|
|
|
|
Transform new data by linear interpolation This node has been automatically generated by wrapping the sklearn.isotonic.IsotonicRegression class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters
Returns
|
|
|
Fit the model using X, y as training data. This node has been automatically generated by wrapping the sklearn.isotonic.IsotonicRegression class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters
Returns
Notes X is stored for future use, as
|
Home | Trees | Indices | Help |
|
---|
Generated by Epydoc 3.0.1 on Tue Mar 8 12:39:48 2016 | http://epydoc.sourceforge.net |