| Home | Trees | Indices | Help |
|
|---|
|
|
Classifier implementing the k-nearest neighbors vote.
This node has been automatically generated by wrapping the ``sklearn.neighbors.classification.KNeighborsClassifier`` class
from the ``sklearn`` library. The wrapped instance can be accessed
through the ``scikits_alg`` attribute.
Read more in the :ref:`User Guide <classification>`.
**Parameters**
n_neighbors : int, optional (default = 5)
Number of neighbors to use by default for :meth:`k_neighbors` queries.
weights : str or callable
weight function used in prediction. Possible values:
- 'uniform' : uniform weights. All points in each neighborhood
are weighted equally.
- 'distance' : weight points by the inverse of their distance.
in this case, closer neighbors of a query point will have a
greater influence than neighbors which are further away.
- [callable] : a user-defined function which accepts an
array of distances, and returns an array of the same shape
containing the weights.
Uniform weights are used by default.
algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional
Algorithm used to compute the nearest neighbors:
- 'ball_tree' will use :class:`BallTree`
- 'kd_tree' will use :class:`KDTree`
- 'brute' will use a brute-force search.
- 'auto' will attempt to decide the most appropriate algorithm
based on the values passed to :meth:`fit` method.
Note: fitting on sparse input will override the setting of
this parameter, using brute force.
leaf_size : int, optional (default = 30)
Leaf size passed to BallTree or KDTree. This can affect the
speed of the construction and query, as well as the memory
required to store the tree. The optimal value depends on the
nature of the problem.
metric : string or DistanceMetric object (default = 'minkowski')
the distance metric to use for the tree. The default metric is
minkowski, and with p=2 is equivalent to the standard Euclidean
metric. See the documentation of the DistanceMetric class for a
list of available metrics.
p : integer, optional (default = 2)
Power parameter for the Minkowski metric. When p = 1, this is
equivalent to using manhattan_distance (l1), and euclidean_distance
(l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.
metric_params : dict, optional (default = None)
Additional keyword arguments for the metric function.
n_jobs : int, optional (default = 1)
The number of parallel jobs to run for neighbors search.
If ``-1``, then the number of jobs is set to the number of CPU cores.
Doesn't affect :meth:`fit` method.
**Examples**
>>> X = [[0], [1], [2], [3]]
>>> y = [0, 0, 1, 1]
>>> from sklearn.neighbors import KNeighborsClassifier
>>> neigh = KNeighborsClassifier(n_neighbors=3)
>>> neigh.fit(X, y) # doctest: +ELLIPSIS
KNeighborsClassifier(...)
>>> print(neigh.predict([[1.1]]))
[0]
>>> print(neigh.predict_proba([[0.9]]))
[[ 0.66666667 0.33333333]]
See also
RadiusNeighborsClassifier
KNeighborsRegressor
RadiusNeighborsRegressor
NearestNeighbors
**Notes**
See :ref:`Nearest Neighbors <neighbors>` in the online documentation
for a discussion of the choice of ``algorithm`` and ``leaf_size``.
.. warning::
Regarding the Nearest Neighbors algorithms, if it is found that two
neighbors, neighbor `k+1` and `k`, have identical distances but
but different labels, the results will depend on the ordering of the
training data.
http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
Inherited from Inherited from Inherited from |
|||
| Inherited from ClassifierCumulator | |||
|---|---|---|---|
|
|||
|
|||
|
|||
| Inherited from ClassifierNode | |||
|
|||
|
|||
|
|||
|
|||
|
|||
| Inherited from Node | |||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
Inherited from |
|||
| Inherited from Node | |||
|---|---|---|---|
|
_train_seq List of tuples: |
|||
|
dtype dtype |
|||
|
input_dim Input dimensions |
|||
|
output_dim Output dimensions |
|||
|
supported_dtypes Supported dtypes |
|||
|
|||
Classifier implementing the k-nearest neighbors vote.
This node has been automatically generated by wrapping the ``sklearn.neighbors.classification.KNeighborsClassifier`` class
from the ``sklearn`` library. The wrapped instance can be accessed
through the ``scikits_alg`` attribute.
Read more in the :ref:`User Guide <classification>`.
**Parameters**
n_neighbors : int, optional (default = 5)
Number of neighbors to use by default for :meth:`k_neighbors` queries.
weights : str or callable
weight function used in prediction. Possible values:
- 'uniform' : uniform weights. All points in each neighborhood
are weighted equally.
- 'distance' : weight points by the inverse of their distance.
in this case, closer neighbors of a query point will have a
greater influence than neighbors which are further away.
- [callable] : a user-defined function which accepts an
array of distances, and returns an array of the same shape
containing the weights.
Uniform weights are used by default.
algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional
Algorithm used to compute the nearest neighbors:
- 'ball_tree' will use :class:`BallTree`
- 'kd_tree' will use :class:`KDTree`
- 'brute' will use a brute-force search.
- 'auto' will attempt to decide the most appropriate algorithm
based on the values passed to :meth:`fit` method.
Note: fitting on sparse input will override the setting of
this parameter, using brute force.
leaf_size : int, optional (default = 30)
Leaf size passed to BallTree or KDTree. This can affect the
speed of the construction and query, as well as the memory
required to store the tree. The optimal value depends on the
nature of the problem.
metric : string or DistanceMetric object (default = 'minkowski')
the distance metric to use for the tree. The default metric is
minkowski, and with p=2 is equivalent to the standard Euclidean
metric. See the documentation of the DistanceMetric class for a
list of available metrics.
p : integer, optional (default = 2)
Power parameter for the Minkowski metric. When p = 1, this is
equivalent to using manhattan_distance (l1), and euclidean_distance
(l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.
metric_params : dict, optional (default = None)
Additional keyword arguments for the metric function.
n_jobs : int, optional (default = 1)
The number of parallel jobs to run for neighbors search.
If ``-1``, then the number of jobs is set to the number of CPU cores.
Doesn't affect :meth:`fit` method.
**Examples**
>>> X = [[0], [1], [2], [3]]
>>> y = [0, 0, 1, 1]
>>> from sklearn.neighbors import KNeighborsClassifier
>>> neigh = KNeighborsClassifier(n_neighbors=3)
>>> neigh.fit(X, y) # doctest: +ELLIPSIS
KNeighborsClassifier(...)
>>> print(neigh.predict([[1.1]]))
[0]
>>> print(neigh.predict_proba([[0.9]]))
[[ 0.66666667 0.33333333]]
See also
RadiusNeighborsClassifier
KNeighborsRegressor
RadiusNeighborsRegressor
NearestNeighbors
**Notes**
See :ref:`Nearest Neighbors <neighbors>` in the online documentation
for a discussion of the choice of ``algorithm`` and ``leaf_size``.
.. warning::
Regarding the Nearest Neighbors algorithms, if it is found that two
neighbors, neighbor `k+1` and `k`, have identical distances but
but different labels, the results will depend on the ordering of the
training data.
http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
|
|
|
Transform the data and labels lists to array objects and reshape them.
|
|
|
Predict the class labels for the provided data This node has been automatically generated by wrapping the sklearn.neighbors.classification.KNeighborsClassifier class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters
Returns
|
Fit the model using X as training data and y as target values This node has been automatically generated by wrapping the sklearn.neighbors.classification.KNeighborsClassifier class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters
|
| Home | Trees | Indices | Help |
|
|---|
| Generated by Epydoc 3.0.1 on Tue Mar 8 12:39:48 2016 | http://epydoc.sourceforge.net |