Package mdp :: Package nodes :: Class LabelBinarizerScikitsLearnNode
[hide private]
[frames] | no frames]

Class LabelBinarizerScikitsLearnNode



Binarize labels in a one-vs-all fashion

This node has been automatically generated by wrapping the ``sklearn.preprocessing.label.LabelBinarizer`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

Several regression and binary classification algorithms are
available in the scikit. A simple way to extend these algorithms
to the multi-class classification case is to use the so-called
one-vs-all scheme.

At learning time, this simply consists in learning one regressor
or binary classifier per class. In doing so, one needs to convert
multi-class labels to binary labels (belong or does not belong
to the class). LabelBinarizer makes this process easy with the
transform method.

At prediction time, one assigns the class for which the corresponding
model gave the greatest confidence. LabelBinarizer makes this easy
with the inverse_transform method.

Read more in the :ref:`User Guide <preprocessing_targets>`.

**Parameters**


neg_label : int (default: 0)
    Value with which negative labels must be encoded.

pos_label : int (default: 1)
    Value with which positive labels must be encoded.

sparse_output : boolean (default: False)
    True if the returned array from transform is desired to be in sparse
    CSR format.

**Attributes**


``classes_`` : array of shape [n_class]
    Holds the label for each class.

``y_type_`` : str,
    Represents the type of the target data as evaluated by
    utils.multiclass.type_of_target. Possible type are 'continuous',
    'continuous-multioutput', 'binary', 'multiclass',
    'mutliclass-multioutput', 'multilabel-indicator', and 'unknown'.

``multilabel_`` : boolean
    True if the transformer was fitted on a multilabel rather than a
    multiclass set of labels. The ``multilabel_`` attribute is deprecated
    and will be removed in 0.18

``sparse_input_`` : boolean,
    True if the input data to transform is given as a sparse matrix, False
    otherwise.

``indicator_matrix_`` : str
    'sparse' when the input data to tansform is a multilable-indicator and
    is sparse, None otherwise. The ``indicator_matrix_`` attribute is
    deprecated as of version 0.16 and will be removed in 0.18


**Examples**

>>> from sklearn import preprocessing
>>> lb = preprocessing.LabelBinarizer()
>>> lb.fit([1, 2, 6, 4, 2])
LabelBinarizer(neg_label=0, pos_label=1, sparse_output=False)
>>> lb.classes_
array([1, 2, 4, 6])
>>> lb.transform([1, 6])
array([[1, 0, 0, 0],
       [0, 0, 0, 1]])

Binary targets transform to a column vector

>>> lb = preprocessing.LabelBinarizer()
>>> lb.fit_transform(['yes', 'no', 'no', 'yes'])
array([[1],
       [0],
       [0],
       [1]])

Passing a 2D matrix for multilabel classification

>>> import numpy as np
>>> lb.fit(np.array([[0, 1, 1], [1, 0, 0]]))
LabelBinarizer(neg_label=0, pos_label=1, sparse_output=False)
>>> lb.classes_
array([0, 1, 2])
>>> lb.transform([0, 1, 2, 1])
array([[1, 0, 0],
       [0, 1, 0],
       [0, 0, 1],
       [0, 1, 0]])

See also

label_binarize : function to perform the transform operation of
    LabelBinarizer with fixed classes.

Instance Methods [hide private]
 
__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
Binarize labels in a one-vs-all fashion
 
_execute(self, x)
 
_get_supported_dtypes(self)
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
 
_stop_training(self, **kwargs)
Concatenate the collected data in a single array.
 
execute(self, x)
Transform multi-class labels to binary labels
 
stop_training(self, **kwargs)
Fit label binarizer

Inherited from unreachable.newobject: __long__, __native__, __nonzero__, __unicode__, next

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

    Inherited from Cumulator
 
_train(self, *args)
Collect all input data in a list.
 
train(self, *args)
Collect all input data in a list.
    Inherited from Node
 
__add__(self, other)
 
__call__(self, x, *args, **kwargs)
Calling an instance of Node is equivalent to calling its execute method.
 
__repr__(self)
repr(x)
 
__str__(self)
str(x)
 
_check_input(self, x)
 
_check_output(self, y)
 
_check_train_args(self, x, *args, **kwargs)
 
_get_train_seq(self)
 
_if_training_stop_training(self)
 
_inverse(self, x)
 
_pre_execution_checks(self, x)
This method contains all pre-execution checks.
 
_pre_inversion_checks(self, y)
This method contains all pre-inversion checks.
 
_refcast(self, x)
Helper function to cast arrays to the internal dtype.
 
_set_dtype(self, t)
 
_set_input_dim(self, n)
 
_set_output_dim(self, n)
 
copy(self, protocol=None)
Return a deep copy of the node.
 
get_current_train_phase(self)
Return the index of the current training phase.
 
get_dtype(self)
Return dtype.
 
get_input_dim(self)
Return input dimensions.
 
get_output_dim(self)
Return output dimensions.
 
get_remaining_train_phase(self)
Return the number of training phases still to accomplish.
 
get_supported_dtypes(self)
Return dtypes supported by the node as a list of dtype objects.
 
has_multiple_training_phases(self)
Return True if the node has multiple training phases.
 
inverse(self, y, *args, **kwargs)
Invert y.
 
is_training(self)
Return True if the node is in the training phase, False otherwise.
 
save(self, filename, protocol=-1)
Save a pickled serialization of the node to filename. If filename is None, return a string.
 
set_dtype(self, t)
Set internal structures' dtype.
 
set_input_dim(self, n)
Set input dimensions.
 
set_output_dim(self, n)
Set output dimensions.
Static Methods [hide private]
 
is_invertible()
Return True if the node can be inverted, False otherwise.
 
is_trainable()
Return True if the node can be trained, False otherwise.
Properties [hide private]

Inherited from object: __class__

    Inherited from Node
  _train_seq
List of tuples:
  dtype
dtype
  input_dim
Input dimensions
  output_dim
Output dimensions
  supported_dtypes
Supported dtypes
Method Details [hide private]

__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
(Constructor)

 

Binarize labels in a one-vs-all fashion

This node has been automatically generated by wrapping the ``sklearn.preprocessing.label.LabelBinarizer`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

Several regression and binary classification algorithms are
available in the scikit. A simple way to extend these algorithms
to the multi-class classification case is to use the so-called
one-vs-all scheme.

At learning time, this simply consists in learning one regressor
or binary classifier per class. In doing so, one needs to convert
multi-class labels to binary labels (belong or does not belong
to the class). LabelBinarizer makes this process easy with the
transform method.

At prediction time, one assigns the class for which the corresponding
model gave the greatest confidence. LabelBinarizer makes this easy
with the inverse_transform method.

Read more in the :ref:`User Guide <preprocessing_targets>`.

**Parameters**


neg_label : int (default: 0)
    Value with which negative labels must be encoded.

pos_label : int (default: 1)
    Value with which positive labels must be encoded.

sparse_output : boolean (default: False)
    True if the returned array from transform is desired to be in sparse
    CSR format.

**Attributes**


``classes_`` : array of shape [n_class]
    Holds the label for each class.

``y_type_`` : str,
    Represents the type of the target data as evaluated by
    utils.multiclass.type_of_target. Possible type are 'continuous',
    'continuous-multioutput', 'binary', 'multiclass',
    'mutliclass-multioutput', 'multilabel-indicator', and 'unknown'.

``multilabel_`` : boolean
    True if the transformer was fitted on a multilabel rather than a
    multiclass set of labels. The ``multilabel_`` attribute is deprecated
    and will be removed in 0.18

``sparse_input_`` : boolean,
    True if the input data to transform is given as a sparse matrix, False
    otherwise.

``indicator_matrix_`` : str
    'sparse' when the input data to tansform is a multilable-indicator and
    is sparse, None otherwise. The ``indicator_matrix_`` attribute is
    deprecated as of version 0.16 and will be removed in 0.18


**Examples**

>>> from sklearn import preprocessing
>>> lb = preprocessing.LabelBinarizer()
>>> lb.fit([1, 2, 6, 4, 2])
LabelBinarizer(neg_label=0, pos_label=1, sparse_output=False)
>>> lb.classes_
array([1, 2, 4, 6])
>>> lb.transform([1, 6])
array([[1, 0, 0, 0],
       [0, 0, 0, 1]])

Binary targets transform to a column vector

>>> lb = preprocessing.LabelBinarizer()
>>> lb.fit_transform(['yes', 'no', 'no', 'yes'])
array([[1],
       [0],
       [0],
       [1]])

Passing a 2D matrix for multilabel classification

>>> import numpy as np
>>> lb.fit(np.array([[0, 1, 1], [1, 0, 0]]))
LabelBinarizer(neg_label=0, pos_label=1, sparse_output=False)
>>> lb.classes_
array([0, 1, 2])
>>> lb.transform([0, 1, 2, 1])
array([[1, 0, 0],
       [0, 1, 0],
       [0, 0, 1],
       [0, 1, 0]])

See also

label_binarize : function to perform the transform operation of
    LabelBinarizer with fixed classes.

Overrides: object.__init__

_execute(self, x)

 
Overrides: Node._execute

_get_supported_dtypes(self)

 
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
Overrides: Node._get_supported_dtypes

_stop_training(self, **kwargs)

 
Concatenate the collected data in a single array.
Overrides: Node._stop_training

execute(self, x)

 

Transform multi-class labels to binary labels

This node has been automatically generated by wrapping the sklearn.preprocessing.label.LabelBinarizer class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

The output of transform is sometimes referred to by some authors as the 1-of-K coding scheme.

Parameters

y : numpy array or sparse matrix of shape (n_samples,) or
(n_samples, n_classes) Target values. The 2-d matrix should only contain 0 and 1, represents multilabel classification. Sparse matrix can be CSR, CSC, COO, DOK, or LIL.

Returns

Y : numpy array or CSR matrix of shape [n_samples, n_classes]
Shape will be [n_samples, 1] for binary problems.
Overrides: Node.execute

is_invertible()
Static Method

 
Return True if the node can be inverted, False otherwise.
Overrides: Node.is_invertible
(inherited documentation)

is_trainable()
Static Method

 
Return True if the node can be trained, False otherwise.
Overrides: Node.is_trainable

stop_training(self, **kwargs)

 

Fit label binarizer

This node has been automatically generated by wrapping the sklearn.preprocessing.label.LabelBinarizer class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

Parameters

y : numpy array of shape (n_samples,) or (n_samples, n_classes)
Target values. The 2-d matrix should only contain 0 and 1, represents multilabel classification.

Returns

self : returns an instance of self.

Overrides: Node.stop_training