Package mdp :: Package nodes :: Class LabelEncoderScikitsLearnNode
[hide private]
[frames] | no frames]

Class LabelEncoderScikitsLearnNode



Encode labels with value between 0 and n_classes-1.

This node has been automatically generated by wrapping the ``sklearn.preprocessing.label.LabelEncoder`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

Read more in the :ref:`User Guide <preprocessing_targets>`.

**Attributes**

``classes_`` : array of shape (n_class,)
    Holds the label for each class.

**Examples**

`LabelEncoder` can be used to normalize labels.

>>> from sklearn import preprocessing
>>> le = preprocessing.LabelEncoder()
>>> le.fit([1, 2, 2, 6])
LabelEncoder()
>>> le.classes_
array([1, 2, 6])
>>> le.transform([1, 1, 2, 6]) #doctest: +ELLIPSIS
array([0, 0, 1, 2]...)
>>> le.inverse_transform([0, 0, 1, 2])
array([1, 1, 2, 6])

It can also be used to transform non-numerical labels (as long as they are
hashable and comparable) to numerical labels.

>>> le = preprocessing.LabelEncoder()
>>> le.fit(["paris", "paris", "tokyo", "amsterdam"])
LabelEncoder()
>>> list(le.classes_)
['amsterdam', 'paris', 'tokyo']
>>> le.transform(["tokyo", "tokyo", "paris"]) #doctest: +ELLIPSIS
array([2, 2, 1]...)
>>> list(le.inverse_transform([2, 2, 1]))
['tokyo', 'tokyo', 'paris']

Instance Methods [hide private]
 
__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
If the input dimension and the output dimension are unspecified, they will be set when the train or execute method is called for the first time. If dtype is unspecified, it will be inherited from the data it receives at the first call of train or execute.
 
_execute(self, x)
 
_get_supported_dtypes(self)
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
 
_stop_training(self, **kwargs)
Concatenate the collected data in a single array.
 
execute(self, x)
Transform labels to normalized encoding.
 
stop_training(self, **kwargs)
Fit label encoder

Inherited from unreachable.newobject: __long__, __native__, __nonzero__, __unicode__, next

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

    Inherited from Cumulator
 
_train(self, *args)
Collect all input data in a list.
 
train(self, *args)
Collect all input data in a list.
    Inherited from Node
 
__add__(self, other)
 
__call__(self, x, *args, **kwargs)
Calling an instance of Node is equivalent to calling its execute method.
 
__repr__(self)
repr(x)
 
__str__(self)
str(x)
 
_check_input(self, x)
 
_check_output(self, y)
 
_check_train_args(self, x, *args, **kwargs)
 
_get_train_seq(self)
 
_if_training_stop_training(self)
 
_inverse(self, x)
 
_pre_execution_checks(self, x)
This method contains all pre-execution checks.
 
_pre_inversion_checks(self, y)
This method contains all pre-inversion checks.
 
_refcast(self, x)
Helper function to cast arrays to the internal dtype.
 
_set_dtype(self, t)
 
_set_input_dim(self, n)
 
_set_output_dim(self, n)
 
copy(self, protocol=None)
Return a deep copy of the node.
 
get_current_train_phase(self)
Return the index of the current training phase.
 
get_dtype(self)
Return dtype.
 
get_input_dim(self)
Return input dimensions.
 
get_output_dim(self)
Return output dimensions.
 
get_remaining_train_phase(self)
Return the number of training phases still to accomplish.
 
get_supported_dtypes(self)
Return dtypes supported by the node as a list of dtype objects.
 
has_multiple_training_phases(self)
Return True if the node has multiple training phases.
 
inverse(self, y, *args, **kwargs)
Invert y.
 
is_training(self)
Return True if the node is in the training phase, False otherwise.
 
save(self, filename, protocol=-1)
Save a pickled serialization of the node to filename. If filename is None, return a string.
 
set_dtype(self, t)
Set internal structures' dtype.
 
set_input_dim(self, n)
Set input dimensions.
 
set_output_dim(self, n)
Set output dimensions.
Static Methods [hide private]
 
is_invertible()
Return True if the node can be inverted, False otherwise.
 
is_trainable()
Return True if the node can be trained, False otherwise.
Properties [hide private]

Inherited from object: __class__

    Inherited from Node
  _train_seq
List of tuples:
  dtype
dtype
  input_dim
Input dimensions
  output_dim
Output dimensions
  supported_dtypes
Supported dtypes
Method Details [hide private]

__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
(Constructor)

 

If the input dimension and the output dimension are unspecified, they will be set when the train or execute method is called for the first time. If dtype is unspecified, it will be inherited from the data it receives at the first call of train or execute.

Every subclass must take care of up- or down-casting the internal structures to match this argument (use _refcast private method when possible).

Overrides: object.__init__
(inherited documentation)

_execute(self, x)

 
Overrides: Node._execute

_get_supported_dtypes(self)

 
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
Overrides: Node._get_supported_dtypes

_stop_training(self, **kwargs)

 
Concatenate the collected data in a single array.
Overrides: Node._stop_training

execute(self, x)

 

Transform labels to normalized encoding.

This node has been automatically generated by wrapping the sklearn.preprocessing.label.LabelEncoder class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

Parameters

y : array-like of shape [n_samples]
Target values.

Returns

y : array-like of shape [n_samples]

Overrides: Node.execute

is_invertible()
Static Method

 
Return True if the node can be inverted, False otherwise.
Overrides: Node.is_invertible
(inherited documentation)

is_trainable()
Static Method

 
Return True if the node can be trained, False otherwise.
Overrides: Node.is_trainable

stop_training(self, **kwargs)

 

Fit label encoder

This node has been automatically generated by wrapping the sklearn.preprocessing.label.LabelEncoder class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

Parameters

y : array-like of shape (n_samples,)
Target values.

Returns

self : returns an instance of self.

Overrides: Node.stop_training