Home | Trees | Indices | Help |
|
---|
|
LabelSpreading model for semi-supervised learning This node has been automatically generated by wrapping the ``sklearn.semi_supervised.label_propagation.LabelSpreading`` class from the ``sklearn`` library. The wrapped instance can be accessed through the ``scikits_alg`` attribute. This model is similar to the basic Label Propgation algorithm, but uses affinity matrix based on the normalized graph Laplacian and soft clamping across the labels. Read more in the :ref:`User Guide <label_propagation>`. **Parameters** kernel : {'knn', 'rbf'} String identifier for kernel function to use. Only 'rbf' and 'knn' kernels are currently supported. gamma : float parameter for rbf kernel n_neighbors : integer > 0 parameter for knn kernel alpha : float clamping factor max_iter : float maximum number of iterations allowed tol : float Convergence tolerance: threshold to consider the system at steady state **Attributes** ``X_`` : array, shape = [n_samples, n_features] Input array. ``classes_`` : array, shape = [n_classes] The distinct labels used in classifying instances. ``label_distributions_`` : array, shape = [n_samples, n_classes] Categorical distribution for each item. ``transduction_`` : array, shape = [n_samples] Label assigned to each item via the transduction. ``n_iter_`` : int Number of iterations run. **Examples** >>> from sklearn import datasets >>> from sklearn.semi_supervised import LabelSpreading >>> label_prop_model = LabelSpreading() >>> iris = datasets.load_iris() >>> random_unlabeled_points = np.where(np.random.random_integers(0, 1, ... size=len(iris.target))) >>> labels = np.copy(iris.target) >>> labels[random_unlabeled_points] = -1 >>> label_prop_model.fit(iris.data, labels) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS LabelSpreading(...) **References** Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, Bernhard Schoelkopf. Learning with local and global consistency (2004) http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.115.3219 See Also LabelPropagation : Unregularized graph based semi-supervised learning
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
Inherited from Inherited from Inherited from |
|||
Inherited from ClassifierCumulator | |||
---|---|---|---|
|
|||
|
|||
|
|||
Inherited from ClassifierNode | |||
|
|||
|
|||
|
|||
|
|||
|
|||
Inherited from Node | |||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|
|||
|
|||
|
|
|||
Inherited from |
|||
Inherited from Node | |||
---|---|---|---|
_train_seq List of tuples: |
|||
dtype dtype |
|||
input_dim Input dimensions |
|||
output_dim Output dimensions |
|||
supported_dtypes Supported dtypes |
|
LabelSpreading model for semi-supervised learning This node has been automatically generated by wrapping the ``sklearn.semi_supervised.label_propagation.LabelSpreading`` class from the ``sklearn`` library. The wrapped instance can be accessed through the ``scikits_alg`` attribute. This model is similar to the basic Label Propgation algorithm, but uses affinity matrix based on the normalized graph Laplacian and soft clamping across the labels. Read more in the :ref:`User Guide <label_propagation>`. **Parameters** kernel : {'knn', 'rbf'} String identifier for kernel function to use. Only 'rbf' and 'knn' kernels are currently supported. gamma : float parameter for rbf kernel n_neighbors : integer > 0 parameter for knn kernel alpha : float clamping factor max_iter : float maximum number of iterations allowed tol : float Convergence tolerance: threshold to consider the system at steady state **Attributes** ``X_`` : array, shape = [n_samples, n_features] Input array. ``classes_`` : array, shape = [n_classes] The distinct labels used in classifying instances. ``label_distributions_`` : array, shape = [n_samples, n_classes] Categorical distribution for each item. ``transduction_`` : array, shape = [n_samples] Label assigned to each item via the transduction. ``n_iter_`` : int Number of iterations run. **Examples** >>> from sklearn import datasets >>> from sklearn.semi_supervised import LabelSpreading >>> label_prop_model = LabelSpreading() >>> iris = datasets.load_iris() >>> random_unlabeled_points = np.where(np.random.random_integers(0, 1, ... size=len(iris.target))) >>> labels = np.copy(iris.target) >>> labels[random_unlabeled_points] = -1 >>> label_prop_model.fit(iris.data, labels) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS LabelSpreading(...) **References** Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, Bernhard Schoelkopf. Learning with local and global consistency (2004) http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.115.3219 See Also LabelPropagation : Unregularized graph based semi-supervised learning
|
|
|
Transform the data and labels lists to array objects and reshape them.
|
|
|
Performs inductive inference across the model. This node has been automatically generated by wrapping the sklearn.semi_supervised.label_propagation.LabelSpreading class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters X : array_like, shape = [n_samples, n_features] Returns
|
Fit a semi-supervised label propagation model based This node has been automatically generated by wrapping the sklearn.semi_supervised.label_propagation.LabelSpreading class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. All the input data is provided matrix X (labeled and unlabeled) and corresponding label matrix y with a dedicated marker value for unlabeled samples. Parameters
Returns self : returns an instance of self.
|
Home | Trees | Indices | Help |
|
---|
Generated by Epydoc 3.0.1 on Tue Mar 8 12:39:48 2016 | http://epydoc.sourceforge.net |