Package mdp :: Package nodes :: Class LabelSpreadingScikitsLearnNode
[hide private]
[frames] | no frames]

Class LabelSpreadingScikitsLearnNode



LabelSpreading model for semi-supervised learning

This node has been automatically generated by wrapping the ``sklearn.semi_supervised.label_propagation.LabelSpreading`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

This model is similar to the basic Label Propgation algorithm,
but uses affinity matrix based on the normalized graph Laplacian
and soft clamping across the labels.

Read more in the :ref:`User Guide <label_propagation>`.

**Parameters**

kernel : {'knn', 'rbf'}
    String identifier for kernel function to use.
    Only 'rbf' and 'knn' kernels are currently supported.

gamma : float
  parameter for rbf kernel

n_neighbors : integer > 0
  parameter for knn kernel

alpha : float
  clamping factor

max_iter : float
  maximum number of iterations allowed

tol : float
  Convergence tolerance: threshold to consider the system at steady
  state

**Attributes**

``X_`` : array, shape = [n_samples, n_features]
    Input array.

``classes_`` : array, shape = [n_classes]
    The distinct labels used in classifying instances.

``label_distributions_`` : array, shape = [n_samples, n_classes]
    Categorical distribution for each item.

``transduction_`` : array, shape = [n_samples]
    Label assigned to each item via the transduction.

``n_iter_`` : int
    Number of iterations run.

**Examples**

>>> from sklearn import datasets
>>> from sklearn.semi_supervised import LabelSpreading
>>> label_prop_model = LabelSpreading()
>>> iris = datasets.load_iris()
>>> random_unlabeled_points = np.where(np.random.random_integers(0, 1,
...    size=len(iris.target)))
>>> labels = np.copy(iris.target)
>>> labels[random_unlabeled_points] = -1
>>> label_prop_model.fit(iris.data, labels)
... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS
LabelSpreading(...)

**References**

Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston,
Bernhard Schoelkopf. Learning with local and global consistency (2004)
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.115.3219

See Also

LabelPropagation : Unregularized graph based semi-supervised learning

Instance Methods [hide private]
 
__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
LabelSpreading model for semi-supervised learning
 
_get_supported_dtypes(self)
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
 
_label(self, x)
 
_stop_training(self, **kwargs)
Transform the data and labels lists to array objects and reshape them.
 
label(self, x)
Performs inductive inference across the model.
 
stop_training(self, **kwargs)
Fit a semi-supervised label propagation model based

Inherited from PreserveDimNode (private): _set_input_dim, _set_output_dim

Inherited from unreachable.newobject: __long__, __native__, __nonzero__, __unicode__, next

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

    Inherited from ClassifierCumulator
 
_check_train_args(self, x, labels)
 
_train(self, x, labels)
Cumulate all input data in a one dimensional list.
 
train(self, x, labels)
Cumulate all input data in a one dimensional list.
    Inherited from ClassifierNode
 
_execute(self, x)
 
_prob(self, x, *args, **kargs)
 
execute(self, x)
Process the data contained in x.
 
prob(self, x, *args, **kwargs)
Predict probability for each possible outcome.
 
rank(self, x, threshold=None)
Returns ordered list with all labels ordered according to prob(x) (e.g., [[3 1 2], [2 1 3], ...]).
    Inherited from Node
 
__add__(self, other)
 
__call__(self, x, *args, **kwargs)
Calling an instance of Node is equivalent to calling its execute method.
 
__repr__(self)
repr(x)
 
__str__(self)
str(x)
 
_check_input(self, x)
 
_check_output(self, y)
 
_get_train_seq(self)
 
_if_training_stop_training(self)
 
_inverse(self, x)
 
_pre_execution_checks(self, x)
This method contains all pre-execution checks.
 
_pre_inversion_checks(self, y)
This method contains all pre-inversion checks.
 
_refcast(self, x)
Helper function to cast arrays to the internal dtype.
 
_set_dtype(self, t)
 
copy(self, protocol=None)
Return a deep copy of the node.
 
get_current_train_phase(self)
Return the index of the current training phase.
 
get_dtype(self)
Return dtype.
 
get_input_dim(self)
Return input dimensions.
 
get_output_dim(self)
Return output dimensions.
 
get_remaining_train_phase(self)
Return the number of training phases still to accomplish.
 
get_supported_dtypes(self)
Return dtypes supported by the node as a list of dtype objects.
 
has_multiple_training_phases(self)
Return True if the node has multiple training phases.
 
inverse(self, y, *args, **kwargs)
Invert y.
 
is_training(self)
Return True if the node is in the training phase, False otherwise.
 
save(self, filename, protocol=-1)
Save a pickled serialization of the node to filename. If filename is None, return a string.
 
set_dtype(self, t)
Set internal structures' dtype.
 
set_input_dim(self, n)
Set input dimensions.
 
set_output_dim(self, n)
Set output dimensions.
Static Methods [hide private]
 
is_invertible()
Return True if the node can be inverted, False otherwise.
 
is_trainable()
Return True if the node can be trained, False otherwise.
Properties [hide private]

Inherited from object: __class__

    Inherited from Node
  _train_seq
List of tuples:
  dtype
dtype
  input_dim
Input dimensions
  output_dim
Output dimensions
  supported_dtypes
Supported dtypes
Method Details [hide private]

__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
(Constructor)

 

LabelSpreading model for semi-supervised learning

This node has been automatically generated by wrapping the ``sklearn.semi_supervised.label_propagation.LabelSpreading`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

This model is similar to the basic Label Propgation algorithm,
but uses affinity matrix based on the normalized graph Laplacian
and soft clamping across the labels.

Read more in the :ref:`User Guide <label_propagation>`.

**Parameters**

kernel : {'knn', 'rbf'}
    String identifier for kernel function to use.
    Only 'rbf' and 'knn' kernels are currently supported.

gamma : float
  parameter for rbf kernel

n_neighbors : integer > 0
  parameter for knn kernel

alpha : float
  clamping factor

max_iter : float
  maximum number of iterations allowed

tol : float
  Convergence tolerance: threshold to consider the system at steady
  state

**Attributes**

``X_`` : array, shape = [n_samples, n_features]
    Input array.

``classes_`` : array, shape = [n_classes]
    The distinct labels used in classifying instances.

``label_distributions_`` : array, shape = [n_samples, n_classes]
    Categorical distribution for each item.

``transduction_`` : array, shape = [n_samples]
    Label assigned to each item via the transduction.

``n_iter_`` : int
    Number of iterations run.

**Examples**

>>> from sklearn import datasets
>>> from sklearn.semi_supervised import LabelSpreading
>>> label_prop_model = LabelSpreading()
>>> iris = datasets.load_iris()
>>> random_unlabeled_points = np.where(np.random.random_integers(0, 1,
...    size=len(iris.target)))
>>> labels = np.copy(iris.target)
>>> labels[random_unlabeled_points] = -1
>>> label_prop_model.fit(iris.data, labels)
... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS
LabelSpreading(...)

**References**

Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston,
Bernhard Schoelkopf. Learning with local and global consistency (2004)
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.115.3219

See Also

LabelPropagation : Unregularized graph based semi-supervised learning

Overrides: object.__init__

_get_supported_dtypes(self)

 
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
Overrides: Node._get_supported_dtypes

_label(self, x)

 
Overrides: ClassifierNode._label

_stop_training(self, **kwargs)

 
Transform the data and labels lists to array objects and reshape them.

Overrides: Node._stop_training

is_invertible()
Static Method

 
Return True if the node can be inverted, False otherwise.
Overrides: Node.is_invertible
(inherited documentation)

is_trainable()
Static Method

 
Return True if the node can be trained, False otherwise.
Overrides: Node.is_trainable

label(self, x)

 

Performs inductive inference across the model.

This node has been automatically generated by wrapping the sklearn.semi_supervised.label_propagation.LabelSpreading class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

Parameters

X : array_like, shape = [n_samples, n_features]

Returns

y : array_like, shape = [n_samples]
Predictions for input data
Overrides: ClassifierNode.label

stop_training(self, **kwargs)

 

Fit a semi-supervised label propagation model based

This node has been automatically generated by wrapping the sklearn.semi_supervised.label_propagation.LabelSpreading class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

All the input data is provided matrix X (labeled and unlabeled) and corresponding label matrix y with a dedicated marker value for unlabeled samples.

Parameters

X : array-like, shape = [n_samples, n_features]
A {n_samples by n_samples} size matrix will be created from this
y : array_like, shape = [n_samples]
n_labeled_samples (unlabeled points are marked as -1) All unlabeled samples will be transductively assigned labels

Returns

self : returns an instance of self.

Overrides: Node.stop_training