Home | Trees | Indices | Help |
|
---|
|
Transforms features by scaling each feature to a given range. This node has been automatically generated by wrapping the ``sklearn.preprocessing.data.MinMaxScaler`` class from the ``sklearn`` library. The wrapped instance can be accessed through the ``scikits_alg`` attribute. This estimator scales and translates each feature individually such that it is in the given range on the training set, i.e. between zero and one. The transformation is given by:: X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) X_scaled = X_std * (max - min) + min where min, max = feature_range. This transformation is often used as an alternative to zero mean, unit variance scaling. Read more in the :ref:`User Guide <preprocessing_scaler>`. **Parameters** feature_range: tuple (min, max), default=(0, 1) Desired range of transformed data. copy : boolean, optional, default True Set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array). **Attributes** ``min_`` : ndarray, shape (n_features,) Per feature adjustment for minimum. ``scale_`` : ndarray, shape (n_features,) Per feature relative scaling of the data. .. versionadded:: 0.17 *scale_* attribute. ``data_min_`` : ndarray, shape (n_features,) Per feature minimum seen in the data .. versionadded:: 0.17 *data_min_* instead of deprecated *data_min*. ``data_max_`` : ndarray, shape (n_features,) Per feature maximum seen in the data .. versionadded:: 0.17 *data_max_* instead of deprecated *data_max*. ``data_range_`` : ndarray, shape (n_features,) Per feature range ``(data_max_ - data_min_)`` seen in the data .. versionadded:: 0.17 *data_range_* instead of deprecated *data_range*.
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
Inherited from Inherited from |
|||
Inherited from Cumulator | |||
---|---|---|---|
|
|||
|
|||
Inherited from Node | |||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|
|||
|
|||
|
|
|||
Inherited from |
|||
Inherited from Node | |||
---|---|---|---|
_train_seq List of tuples: |
|||
dtype dtype |
|||
input_dim Input dimensions |
|||
output_dim Output dimensions |
|||
supported_dtypes Supported dtypes |
|
Transforms features by scaling each feature to a given range. This node has been automatically generated by wrapping the ``sklearn.preprocessing.data.MinMaxScaler`` class from the ``sklearn`` library. The wrapped instance can be accessed through the ``scikits_alg`` attribute. This estimator scales and translates each feature individually such that it is in the given range on the training set, i.e. between zero and one. The transformation is given by:: X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) X_scaled = X_std * (max - min) + min where min, max = feature_range. This transformation is often used as an alternative to zero mean, unit variance scaling. Read more in the :ref:`User Guide <preprocessing_scaler>`. **Parameters** feature_range: tuple (min, max), default=(0, 1) Desired range of transformed data. copy : boolean, optional, default True Set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array). **Attributes** ``min_`` : ndarray, shape (n_features,) Per feature adjustment for minimum. ``scale_`` : ndarray, shape (n_features,) Per feature relative scaling of the data. .. versionadded:: 0.17 *scale_* attribute. ``data_min_`` : ndarray, shape (n_features,) Per feature minimum seen in the data .. versionadded:: 0.17 *data_min_* instead of deprecated *data_min*. ``data_max_`` : ndarray, shape (n_features,) Per feature maximum seen in the data .. versionadded:: 0.17 *data_max_* instead of deprecated *data_max*. ``data_range_`` : ndarray, shape (n_features,) Per feature range ``(data_max_ - data_min_)`` seen in the data .. versionadded:: 0.17 *data_range_* instead of deprecated *data_range*.
|
|
|
|
Scaling features of X according to feature_range. This node has been automatically generated by wrapping the sklearn.preprocessing.data.MinMaxScaler class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters
|
|
|
Compute the minimum and maximum to be used for later scaling. This node has been automatically generated by wrapping the sklearn.preprocessing.data.MinMaxScaler class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters
|
Home | Trees | Indices | Help |
|
---|
Generated by Epydoc 3.0.1 on Tue Mar 8 12:39:48 2016 | http://epydoc.sourceforge.net |