Home | Trees | Indices | Help |
|
---|
|
Mini-batch dictionary learning This node has been automatically generated by wrapping the ``sklearn.decomposition.dict_learning.MiniBatchDictionaryLearning`` class from the ``sklearn`` library. The wrapped instance can be accessed through the ``scikits_alg`` attribute. Finds a dictionary (a set of atoms) that can best be used to represent data using a sparse code. Solves the optimization problem:: (U^*,V^*) = argmin 0.5 || Y - U V ||_2^2 + alpha * || U ||_1 (U,V) with || V_k ||_2 = 1 for all 0 <= k < n_components Read more in the :ref:`User Guide <DictionaryLearning>`. **Parameters** n_components : int, number of dictionary elements to extract alpha : float, sparsity controlling parameter n_iter : int, total number of iterations to perform fit_algorithm : {'lars', 'cd'} lars: uses the least angle regression method to solve the lasso problem (linear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). Lars will be faster if the estimated components are sparse. transform_algorithm : {'lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'} Algorithm used to transform the data. lars: uses the least angle regression method (linear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal matching pursuit to estimate the sparse solution threshold: squashes to zero all coefficients less than alpha from the projection dictionary * X' transform_n_nonzero_coefs : int, ``0.1 * n_features`` by default Number of nonzero coefficients to target in each column of the solution. This is only used by `algorithm='lars'` and `algorithm='omp'` and is overridden by `alpha` in the `omp` case. transform_alpha : float, 1. by default If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the penalty applied to the L1 norm. If `algorithm='threshold'`, `alpha` is the absolute value of the threshold below which coefficients will be squashed to zero. If `algorithm='omp'`, `alpha` is the tolerance parameter: the value of the reconstruction error targeted. In this case, it overrides `n_nonzero_coefs`. split_sign : bool, False by default Whether to split the sparse feature vector into the concatenation of its negative part and its positive part. This can improve the performance of downstream classifiers. n_jobs : int, number of parallel jobs to run dict_init : array of shape (n_components, n_features), initial value of the dictionary for warm restart scenarios verbose : - degree of verbosity of the printed output batch_size : int, number of samples in each mini-batch shuffle : bool, whether to shuffle the samples before forming batches random_state : int or RandomState Pseudo number generator state used for random sampling. **Attributes** ``components_`` : array, [n_components, n_features] components extracted from the data ``inner_stats_`` : tuple of (A, B) ndarrays Internal sufficient statistics that are kept by the algorithm. Keeping them is useful in online settings, to avoid loosing the history of the evolution, but they shouldn't have any use for the end user. A (n_components, n_components) is the dictionary covariance matrix. B (n_features, n_components) is the data approximation matrix ``n_iter_`` : int Number of iterations run. **Notes** **References:** J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009: Online dictionary learning for sparse coding (http://www.di.ens.fr/sierra/pdfs/icml09.pdf) See also SparseCoder DictionaryLearning SparsePCA MiniBatchSparsePCA
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
Inherited from Inherited from |
|||
Inherited from Cumulator | |||
---|---|---|---|
|
|||
|
|||
Inherited from Node | |||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|
|||
|
|||
|
|
|||
Inherited from |
|||
Inherited from Node | |||
---|---|---|---|
_train_seq List of tuples: |
|||
dtype dtype |
|||
input_dim Input dimensions |
|||
output_dim Output dimensions |
|||
supported_dtypes Supported dtypes |
|
Mini-batch dictionary learning This node has been automatically generated by wrapping the ``sklearn.decomposition.dict_learning.MiniBatchDictionaryLearning`` class from the ``sklearn`` library. The wrapped instance can be accessed through the ``scikits_alg`` attribute. Finds a dictionary (a set of atoms) that can best be used to represent data using a sparse code. Solves the optimization problem:: (U^*,V^*) = argmin 0.5 || Y - U V ||_2^2 + alpha * || U ||_1 (U,V) with || V_k ||_2 = 1 for all 0 <= k < n_components Read more in the :ref:`User Guide <DictionaryLearning>`. **Parameters** n_components : int, number of dictionary elements to extract alpha : float, sparsity controlling parameter n_iter : int, total number of iterations to perform fit_algorithm : {'lars', 'cd'} lars: uses the least angle regression method to solve the lasso problem (linear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). Lars will be faster if the estimated components are sparse. transform_algorithm : {'lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'} Algorithm used to transform the data. lars: uses the least angle regression method (linear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal matching pursuit to estimate the sparse solution threshold: squashes to zero all coefficients less than alpha from the projection dictionary * X' transform_n_nonzero_coefs : int, ``0.1 * n_features`` by default Number of nonzero coefficients to target in each column of the solution. This is only used by `algorithm='lars'` and `algorithm='omp'` and is overridden by `alpha` in the `omp` case. transform_alpha : float, 1. by default If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the penalty applied to the L1 norm. If `algorithm='threshold'`, `alpha` is the absolute value of the threshold below which coefficients will be squashed to zero. If `algorithm='omp'`, `alpha` is the tolerance parameter: the value of the reconstruction error targeted. In this case, it overrides `n_nonzero_coefs`. split_sign : bool, False by default Whether to split the sparse feature vector into the concatenation of its negative part and its positive part. This can improve the performance of downstream classifiers. n_jobs : int, number of parallel jobs to run dict_init : array of shape (n_components, n_features), initial value of the dictionary for warm restart scenarios verbose : - degree of verbosity of the printed output batch_size : int, number of samples in each mini-batch shuffle : bool, whether to shuffle the samples before forming batches random_state : int or RandomState Pseudo number generator state used for random sampling. **Attributes** ``components_`` : array, [n_components, n_features] components extracted from the data ``inner_stats_`` : tuple of (A, B) ndarrays Internal sufficient statistics that are kept by the algorithm. Keeping them is useful in online settings, to avoid loosing the history of the evolution, but they shouldn't have any use for the end user. A (n_components, n_components) is the dictionary covariance matrix. B (n_features, n_components) is the data approximation matrix ``n_iter_`` : int Number of iterations run. **Notes** **References:** J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009: Online dictionary learning for sparse coding (http://www.di.ens.fr/sierra/pdfs/icml09.pdf) See also SparseCoder DictionaryLearning SparsePCA MiniBatchSparsePCA
|
|
|
|
Encode the data as a sparse combination of the dictionary atoms. This node has been automatically generated by wrapping the sklearn.decomposition.dict_learning.MiniBatchDictionaryLearning class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Coding method is determined by the object parameter
Parameters
Returns
|
|
|
Fit the model from data in X. This node has been automatically generated by wrapping the sklearn.decomposition.dict_learning.MiniBatchDictionaryLearning class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters
Returns
|
Home | Trees | Indices | Help |
|
---|
Generated by Epydoc 3.0.1 on Tue Mar 8 12:39:48 2016 | http://epydoc.sourceforge.net |