Package mdp :: Package nodes :: Class NearestCentroidScikitsLearnNode
[hide private]
[frames] | no frames]

Class NearestCentroidScikitsLearnNode



Nearest centroid classifier.

This node has been automatically generated by wrapping the ``sklearn.neighbors.nearest_centroid.NearestCentroid`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

Each class is represented by its centroid, with test samples classified to
the class with the nearest centroid.

Read more in the :ref:`User Guide <nearest_centroid_classifier>`.

**Parameters**

metric: string, or callable
    The metric to use when calculating distance between instances in a
    feature array. If metric is a string or callable, it must be one of
    the options allowed by metrics.pairwise.pairwise_distances for its
    metric parameter.
    The centroids for the samples corresponding to each class is the point
    from which the sum of the distances (according to the metric) of all
    samples that belong to that particular class are minimized.
    If the "manhattan" metric is provided, this centroid is the median and
    for all other metrics, the centroid is now set to be the mean.

shrink_threshold : float, optional (default = None)
    Threshold for shrinking centroids to remove features.

**Attributes**

``centroids_`` : array-like, shape = [n_classes, n_features]
    Centroid of each class

**Examples**

>>> from sklearn.neighbors.nearest_centroid import NearestCentroid
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> y = np.array([1, 1, 1, 2, 2, 2])
>>> clf = NearestCentroid()
>>> clf.fit(X, y)
NearestCentroid(metric='euclidean', shrink_threshold=None)
>>> print(clf.predict([[-0.8, -1]]))
[1]

See also

sklearn.neighbors.KNeighborsClassifier: nearest neighbors classifier

**Notes**

When used for text classification with tf-idf vectors, this classifier is
also known as the Rocchio classifier.

**References**

Tibshirani, R., Hastie, T., Narasimhan, B., & Chu, G. (2002). Diagnosis of
multiple cancer types by shrunken centroids of gene expression. Proceedings
of the National Academy of Sciences of the United States of America,
99(10), 6567-6572. The National Academy of Sciences.

Instance Methods [hide private]
 
__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
Nearest centroid classifier.
 
_get_supported_dtypes(self)
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
 
_label(self, x)
 
_stop_training(self, **kwargs)
Transform the data and labels lists to array objects and reshape them.
 
label(self, x)
Perform classification on an array of test vectors X.
 
stop_training(self, **kwargs)
Fit the NearestCentroid model according to the given training data.

Inherited from PreserveDimNode (private): _set_input_dim, _set_output_dim

Inherited from unreachable.newobject: __long__, __native__, __nonzero__, __unicode__, next

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

    Inherited from ClassifierCumulator
 
_check_train_args(self, x, labels)
 
_train(self, x, labels)
Cumulate all input data in a one dimensional list.
 
train(self, x, labels)
Cumulate all input data in a one dimensional list.
    Inherited from ClassifierNode
 
_execute(self, x)
 
_prob(self, x, *args, **kargs)
 
execute(self, x)
Process the data contained in x.
 
prob(self, x, *args, **kwargs)
Predict probability for each possible outcome.
 
rank(self, x, threshold=None)
Returns ordered list with all labels ordered according to prob(x) (e.g., [[3 1 2], [2 1 3], ...]).
    Inherited from Node
 
__add__(self, other)
 
__call__(self, x, *args, **kwargs)
Calling an instance of Node is equivalent to calling its execute method.
 
__repr__(self)
repr(x)
 
__str__(self)
str(x)
 
_check_input(self, x)
 
_check_output(self, y)
 
_get_train_seq(self)
 
_if_training_stop_training(self)
 
_inverse(self, x)
 
_pre_execution_checks(self, x)
This method contains all pre-execution checks.
 
_pre_inversion_checks(self, y)
This method contains all pre-inversion checks.
 
_refcast(self, x)
Helper function to cast arrays to the internal dtype.
 
_set_dtype(self, t)
 
copy(self, protocol=None)
Return a deep copy of the node.
 
get_current_train_phase(self)
Return the index of the current training phase.
 
get_dtype(self)
Return dtype.
 
get_input_dim(self)
Return input dimensions.
 
get_output_dim(self)
Return output dimensions.
 
get_remaining_train_phase(self)
Return the number of training phases still to accomplish.
 
get_supported_dtypes(self)
Return dtypes supported by the node as a list of dtype objects.
 
has_multiple_training_phases(self)
Return True if the node has multiple training phases.
 
inverse(self, y, *args, **kwargs)
Invert y.
 
is_training(self)
Return True if the node is in the training phase, False otherwise.
 
save(self, filename, protocol=-1)
Save a pickled serialization of the node to filename. If filename is None, return a string.
 
set_dtype(self, t)
Set internal structures' dtype.
 
set_input_dim(self, n)
Set input dimensions.
 
set_output_dim(self, n)
Set output dimensions.
Static Methods [hide private]
 
is_invertible()
Return True if the node can be inverted, False otherwise.
 
is_trainable()
Return True if the node can be trained, False otherwise.
Properties [hide private]

Inherited from object: __class__

    Inherited from Node
  _train_seq
List of tuples:
  dtype
dtype
  input_dim
Input dimensions
  output_dim
Output dimensions
  supported_dtypes
Supported dtypes
Method Details [hide private]

__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
(Constructor)

 

Nearest centroid classifier.

This node has been automatically generated by wrapping the ``sklearn.neighbors.nearest_centroid.NearestCentroid`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

Each class is represented by its centroid, with test samples classified to
the class with the nearest centroid.

Read more in the :ref:`User Guide <nearest_centroid_classifier>`.

**Parameters**

metric: string, or callable
    The metric to use when calculating distance between instances in a
    feature array. If metric is a string or callable, it must be one of
    the options allowed by metrics.pairwise.pairwise_distances for its
    metric parameter.
    The centroids for the samples corresponding to each class is the point
    from which the sum of the distances (according to the metric) of all
    samples that belong to that particular class are minimized.
    If the "manhattan" metric is provided, this centroid is the median and
    for all other metrics, the centroid is now set to be the mean.

shrink_threshold : float, optional (default = None)
    Threshold for shrinking centroids to remove features.

**Attributes**

``centroids_`` : array-like, shape = [n_classes, n_features]
    Centroid of each class

**Examples**

>>> from sklearn.neighbors.nearest_centroid import NearestCentroid
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> y = np.array([1, 1, 1, 2, 2, 2])
>>> clf = NearestCentroid()
>>> clf.fit(X, y)
NearestCentroid(metric='euclidean', shrink_threshold=None)
>>> print(clf.predict([[-0.8, -1]]))
[1]

See also

sklearn.neighbors.KNeighborsClassifier: nearest neighbors classifier

**Notes**

When used for text classification with tf-idf vectors, this classifier is
also known as the Rocchio classifier.

**References**

Tibshirani, R., Hastie, T., Narasimhan, B., & Chu, G. (2002). Diagnosis of
multiple cancer types by shrunken centroids of gene expression. Proceedings
of the National Academy of Sciences of the United States of America,
99(10), 6567-6572. The National Academy of Sciences.

Overrides: object.__init__

_get_supported_dtypes(self)

 
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
Overrides: Node._get_supported_dtypes

_label(self, x)

 
Overrides: ClassifierNode._label

_stop_training(self, **kwargs)

 
Transform the data and labels lists to array objects and reshape them.

Overrides: Node._stop_training

is_invertible()
Static Method

 
Return True if the node can be inverted, False otherwise.
Overrides: Node.is_invertible
(inherited documentation)

is_trainable()
Static Method

 
Return True if the node can be trained, False otherwise.
Overrides: Node.is_trainable

label(self, x)

 

Perform classification on an array of test vectors X.

This node has been automatically generated by wrapping the sklearn.neighbors.nearest_centroid.NearestCentroid class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

The predicted class C for each sample in X is returned.

Parameters

X : array-like, shape = [n_samples, n_features]

Returns

C : array, shape = [n_samples]

Notes

If the metric constructor parameter is "precomputed", X is assumed to be the distance matrix between the data to be predicted and self.centroids_.

Overrides: ClassifierNode.label

stop_training(self, **kwargs)

 

Fit the NearestCentroid model according to the given training data.

This node has been automatically generated by wrapping the sklearn.neighbors.nearest_centroid.NearestCentroid class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

Parameters

X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Training vector, where n_samples in the number of samples and n_features is the number of features. Note that centroid shrinking cannot be used with sparse matrices.
y : array, shape = [n_samples]
Target values (integers)
Overrides: Node.stop_training