Package mdp :: Package nodes :: Class OneClassSVMScikitsLearnNode
[hide private]
[frames] | no frames]

Class OneClassSVMScikitsLearnNode



Unsupervised Outlier Detection.

This node has been automatically generated by wrapping the ``sklearn.svm.classes.OneClassSVM`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

Estimate the support of a high-dimensional distribution.

The implementation is based on libsvm.

Read more in the :ref:`User Guide <svm_outlier_detection>`.

**Parameters**

kernel : string, optional (default='rbf')
     Specifies the kernel type to be used in the algorithm.
     It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or
     a callable.
     If none is given, 'rbf' will be used. If a callable is given it is
     used to precompute the kernel matrix.

nu : float, optional
    An upper bound on the fraction of training
    errors and a lower bound of the fraction of support
    vectors. Should be in the interval (0, 1]. By default 0.5
    will be taken.

degree : int, optional (default=3)
    Degree of the polynomial kernel function ('poly').
    Ignored by all other kernels.

gamma : float, optional (default='auto')
    Kernel coefficient for 'rbf', 'poly' and 'sigmoid'.
    If gamma is 'auto' then 1/n_features will be used instead.

coef0 : float, optional (default=0.0)
    Independent term in kernel function.
    It is only significant in 'poly' and 'sigmoid'.

tol : float, optional
    Tolerance for stopping criterion.

shrinking : boolean, optional
    Whether to use the shrinking heuristic.

cache_size : float, optional
    Specify the size of the kernel cache (in MB).

verbose : bool, default: False
    Enable verbose output. Note that this setting takes advantage of a
    per-process runtime setting in libsvm that, if enabled, may not work
    properly in a multithreaded context.

max_iter : int, optional (default=-1)
    Hard limit on iterations within solver, or -1 for no limit.

random_state : int seed, RandomState instance, or None (default)
    The seed of the pseudo random number generator to use when
    shuffling the data for probability estimation.

**Attributes**

``support_`` : array-like, shape = [n_SV]
    Indices of support vectors.

``support_vectors_`` : array-like, shape = [nSV, n_features]
    Support vectors.

``dual_coef_`` : array, shape = [n_classes-1, n_SV]
    Coefficients of the support vectors in the decision function.

``coef_`` : array, shape = [n_classes-1, n_features]
    Weights assigned to the features (coefficients in the primal
    problem). This is only available in the case of a linear kernel.

    `coef_` is readonly property derived from `dual_coef_` and
    `support_vectors_`

``intercept_`` : array, shape = [n_classes-1]
    Constants in decision function.

Instance Methods [hide private]
 
__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
Unsupervised Outlier Detection.
 
_execute(self, x)
 
_get_supported_dtypes(self)
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
 
_stop_training(self, **kwargs)
Concatenate the collected data in a single array.
 
execute(self, x)
Perform regression on samples in X.
 
stop_training(self, **kwargs)
Detects the soft boundary of the set of samples X.

Inherited from unreachable.newobject: __long__, __native__, __nonzero__, __unicode__, next

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

    Inherited from Cumulator
 
_train(self, *args)
Collect all input data in a list.
 
train(self, *args)
Collect all input data in a list.
    Inherited from Node
 
__add__(self, other)
 
__call__(self, x, *args, **kwargs)
Calling an instance of Node is equivalent to calling its execute method.
 
__repr__(self)
repr(x)
 
__str__(self)
str(x)
 
_check_input(self, x)
 
_check_output(self, y)
 
_check_train_args(self, x, *args, **kwargs)
 
_get_train_seq(self)
 
_if_training_stop_training(self)
 
_inverse(self, x)
 
_pre_execution_checks(self, x)
This method contains all pre-execution checks.
 
_pre_inversion_checks(self, y)
This method contains all pre-inversion checks.
 
_refcast(self, x)
Helper function to cast arrays to the internal dtype.
 
_set_dtype(self, t)
 
_set_input_dim(self, n)
 
_set_output_dim(self, n)
 
copy(self, protocol=None)
Return a deep copy of the node.
 
get_current_train_phase(self)
Return the index of the current training phase.
 
get_dtype(self)
Return dtype.
 
get_input_dim(self)
Return input dimensions.
 
get_output_dim(self)
Return output dimensions.
 
get_remaining_train_phase(self)
Return the number of training phases still to accomplish.
 
get_supported_dtypes(self)
Return dtypes supported by the node as a list of dtype objects.
 
has_multiple_training_phases(self)
Return True if the node has multiple training phases.
 
inverse(self, y, *args, **kwargs)
Invert y.
 
is_training(self)
Return True if the node is in the training phase, False otherwise.
 
save(self, filename, protocol=-1)
Save a pickled serialization of the node to filename. If filename is None, return a string.
 
set_dtype(self, t)
Set internal structures' dtype.
 
set_input_dim(self, n)
Set input dimensions.
 
set_output_dim(self, n)
Set output dimensions.
Static Methods [hide private]
 
is_invertible()
Return True if the node can be inverted, False otherwise.
 
is_trainable()
Return True if the node can be trained, False otherwise.
Properties [hide private]

Inherited from object: __class__

    Inherited from Node
  _train_seq
List of tuples:
  dtype
dtype
  input_dim
Input dimensions
  output_dim
Output dimensions
  supported_dtypes
Supported dtypes
Method Details [hide private]

__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
(Constructor)

 

Unsupervised Outlier Detection.

This node has been automatically generated by wrapping the ``sklearn.svm.classes.OneClassSVM`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

Estimate the support of a high-dimensional distribution.

The implementation is based on libsvm.

Read more in the :ref:`User Guide <svm_outlier_detection>`.

**Parameters**

kernel : string, optional (default='rbf')
     Specifies the kernel type to be used in the algorithm.
     It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or
     a callable.
     If none is given, 'rbf' will be used. If a callable is given it is
     used to precompute the kernel matrix.

nu : float, optional
    An upper bound on the fraction of training
    errors and a lower bound of the fraction of support
    vectors. Should be in the interval (0, 1]. By default 0.5
    will be taken.

degree : int, optional (default=3)
    Degree of the polynomial kernel function ('poly').
    Ignored by all other kernels.

gamma : float, optional (default='auto')
    Kernel coefficient for 'rbf', 'poly' and 'sigmoid'.
    If gamma is 'auto' then 1/n_features will be used instead.

coef0 : float, optional (default=0.0)
    Independent term in kernel function.
    It is only significant in 'poly' and 'sigmoid'.

tol : float, optional
    Tolerance for stopping criterion.

shrinking : boolean, optional
    Whether to use the shrinking heuristic.

cache_size : float, optional
    Specify the size of the kernel cache (in MB).

verbose : bool, default: False
    Enable verbose output. Note that this setting takes advantage of a
    per-process runtime setting in libsvm that, if enabled, may not work
    properly in a multithreaded context.

max_iter : int, optional (default=-1)
    Hard limit on iterations within solver, or -1 for no limit.

random_state : int seed, RandomState instance, or None (default)
    The seed of the pseudo random number generator to use when
    shuffling the data for probability estimation.

**Attributes**

``support_`` : array-like, shape = [n_SV]
    Indices of support vectors.

``support_vectors_`` : array-like, shape = [nSV, n_features]
    Support vectors.

``dual_coef_`` : array, shape = [n_classes-1, n_SV]
    Coefficients of the support vectors in the decision function.

``coef_`` : array, shape = [n_classes-1, n_features]
    Weights assigned to the features (coefficients in the primal
    problem). This is only available in the case of a linear kernel.

    `coef_` is readonly property derived from `dual_coef_` and
    `support_vectors_`

``intercept_`` : array, shape = [n_classes-1]
    Constants in decision function.

Overrides: object.__init__

_execute(self, x)

 
Overrides: Node._execute

_get_supported_dtypes(self)

 
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
Overrides: Node._get_supported_dtypes

_stop_training(self, **kwargs)

 
Concatenate the collected data in a single array.
Overrides: Node._stop_training

execute(self, x)

 

Perform regression on samples in X.

This node has been automatically generated by wrapping the sklearn.svm.classes.OneClassSVM class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

For an one-class model, +1 or -1 is returned.

Parameters

X : {array-like, sparse matrix}, shape (n_samples, n_features)
For kernel="precomputed", the expected shape of X is (n_samples_test, n_samples_train).

Returns

y_pred : array, shape (n_samples,)

Overrides: Node.execute

is_invertible()
Static Method

 
Return True if the node can be inverted, False otherwise.
Overrides: Node.is_invertible
(inherited documentation)

is_trainable()
Static Method

 
Return True if the node can be trained, False otherwise.
Overrides: Node.is_trainable

stop_training(self, **kwargs)

 

Detects the soft boundary of the set of samples X.

This node has been automatically generated by wrapping the sklearn.svm.classes.OneClassSVM class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

Parameters

X : {array-like, sparse matrix}, shape (n_samples, n_features)
Set of samples, where n_samples is the number of samples and n_features is the number of features.
sample_weight : array-like, shape (n_samples,)
Per-sample weights. Rescale C per sample. Higher weights force the classifier to put more emphasis on these points.

Returns

self : object
Returns self.

Notes

If X is not a C-ordered contiguous array it is copied.

Overrides: Node.stop_training