Class ProjectedGradientNMFScikitsLearnNode
Non-Negative Matrix Factorization (NMF)
This node has been automatically generated by wrapping the ``sklearn.decomposition.nmf.ProjectedGradientNMF`` class
from the ``sklearn`` library. The wrapped instance can be accessed
through the ``scikits_alg`` attribute.
Find two non-negative matrices (W, H) whose product approximates the non-
negative matrix X. This factorization can be used for example for
dimensionality reduction, source separation or topic extraction.
The objective function is::
0.5 * ||X - WH||_Fro^2
+ alpha * l1_ratio * ||vec(W)||_1
+ alpha * l1_ratio * ||vec(H)||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2
+ 0.5 * alpha * (1 - l1_ratio) * ||H||_Fro^2
Where::
||A||_Fro^2 = \sum_{i,j} A_{ij}^2 (Frobenius norm)
||vec(A)||_1 = \sum_{i,j} abs(A_{ij}) (Elementwise L1 norm)
The objective function is minimized with an alternating minimization of W
and H.
Read more in the :ref:`User Guide <NMF>`.
**Parameters**
n_components : int or None
Number of components, if n_components is not set all features
are kept.
init : 'random' | 'nndsvd' | 'nndsvda' | 'nndsvdar' | 'custom'
Method used to initialize the procedure.
Default: 'nndsvdar' if n_components < n_features, otherwise random.
Valid options:
- 'random': non-negative random matrices, scaled with:
- sqrt(X.mean() / n_components)
- 'nndsvd': Nonnegative Double Singular Value Decomposition (NNDSVD)
initialization (better for sparseness)
- 'nndsvda': NNDSVD with zeros filled with the average of X
(better when sparsity is not desired)
- 'nndsvdar': NNDSVD with zeros filled with small random values
(generally faster, less accurate alternative to NNDSVDa
for when sparsity is not desired)
- 'custom': use custom matrices W and H
solver : 'pg' | 'cd'
Numerical solver to use:
- 'pg' is a Projected Gradient solver (deprecated).
- 'cd' is a Coordinate Descent solver (recommended).
.. versionadded:: 0.17
Coordinate Descent solver.
.. versionchanged:: 0.17
Deprecated Projected Gradient solver.
tol : double, default: 1e-4
Tolerance value used in stopping conditions.
max_iter : integer, default: 200
Number of iterations to compute.
random_state : integer seed, RandomState instance, or None (default)
Random number generator seed control.
alpha : double, default: 0.
Constant that multiplies the regularization terms. Set it to zero to
have no regularization.
.. versionadded:: 0.17
*alpha* used in the Coordinate Descent solver.
l1_ratio : double, default: 0.
The regularization mixing parameter, with 0 <= l1_ratio <= 1.
For l1_ratio = 0 the penalty is an elementwise L2 penalty
(aka Frobenius Norm).
For l1_ratio = 1 it is an elementwise L1 penalty.
For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2.
.. versionadded:: 0.17
Regularization parameter *l1_ratio* used in the Coordinate Descent solver.
shuffle : boolean, default: False
If true, randomize the order of coordinates in the CD solver.
.. versionadded:: 0.17
*shuffle* parameter used in the Coordinate Descent solver.
nls_max_iter : integer, default: 2000
Number of iterations in NLS subproblem.
Used only in the deprecated 'pg' solver.
.. versionchanged:: 0.17
Deprecated Projected Gradient solver. Use Coordinate Descent solver
instead.
sparseness : 'data' | 'components' | None, default: None
Where to enforce sparsity in the model.
Used only in the deprecated 'pg' solver.
.. versionchanged:: 0.17
Deprecated Projected Gradient solver. Use Coordinate Descent solver
instead.
beta : double, default: 1
Degree of sparseness, if sparseness is not None. Larger values mean
more sparseness. Used only in the deprecated 'pg' solver.
.. versionchanged:: 0.17
Deprecated Projected Gradient solver. Use Coordinate Descent solver
instead.
eta : double, default: 0.1
Degree of correctness to maintain, if sparsity is not None. Smaller
values mean larger error. Used only in the deprecated 'pg' solver.
.. versionchanged:: 0.17
Deprecated Projected Gradient solver. Use Coordinate Descent solver
instead.
**Attributes**
``components_`` : array, [n_components, n_features]
Non-negative components of the data.
``reconstruction_err_`` : number
Frobenius norm of the matrix difference between
the training data and the reconstructed data from
the fit produced by the model. ``|| X - WH ||_2``
``n_iter_`` : int
Actual number of iterations.
**Examples**
>>> import numpy as np
>>> X = np.array([[1,1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]])
>>> from sklearn.decomposition import NMF
>>> model = NMF(n_components=2, init='random', random_state=0)
>>> model.fit(X) #doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
NMF(alpha=0.0, beta=1, eta=0.1, init='random', l1_ratio=0.0, max_iter=200,
n_components=2, nls_max_iter=2000, random_state=0, shuffle=False,
solver='cd', sparseness=None, tol=0.0001, verbose=0)
>>> model.components_
array([[ 2.09783018, 0.30560234],
[ 2.13443044, 2.13171694]])
>>> model.reconstruction_err_ #doctest: +ELLIPSIS
0.00115993...
**References**
C.-J. Lin. Projected gradient methods for non-negative matrix
factorization. Neural Computation, 19(2007), 2756-2779.
http://www.csie.ntu.edu.tw/~cjlin/nmf/
Cichocki, Andrzej, and P. H. A. N. Anh-Huy. "Fast local algorithms for
large scale nonnegative matrix and tensor factorizations."
IEICE transactions on fundamentals of electronics, communications and
computer sciences 92.3: 708-721, 2009.
|
__init__(self,
input_dim=None,
output_dim=None,
dtype=None,
**kwargs)
This node has been automatically generated by wrapping the sklearn.decomposition.nmf.ProjectedGradientNMF class
from the sklearn library. The wrapped instance can be accessed
through the scikits_alg attribute. |
|
|
|
|
|
_get_supported_dtypes(self)
Return the list of dtypes supported by this node.
The types can be specified in any format allowed by numpy.dtype. |
|
|
|
_stop_training(self,
**kwargs)
Concatenate the collected data in a single array. |
|
|
|
execute(self,
x)
Transform the data X according to the fitted NMF model |
|
|
|
|
Inherited from unreachable.newobject :
__long__ ,
__native__ ,
__nonzero__ ,
__unicode__ ,
next
Inherited from object :
__delattr__ ,
__format__ ,
__getattribute__ ,
__hash__ ,
__new__ ,
__reduce__ ,
__reduce_ex__ ,
__setattr__ ,
__sizeof__ ,
__subclasshook__
|
|
_train(self,
*args)
Collect all input data in a list. |
|
|
|
train(self,
*args)
Collect all input data in a list. |
|
|
|
|
|
__call__(self,
x,
*args,
**kwargs)
Calling an instance of Node is equivalent to calling
its execute method. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_refcast(self,
x)
Helper function to cast arrays to the internal dtype. |
|
|
|
|
|
|
|
|
|
copy(self,
protocol=None)
Return a deep copy of the node. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inverse(self,
y,
*args,
**kwargs)
Invert y . |
|
|
|
is_training(self)
Return True if the node is in the training phase,
False otherwise. |
|
|
|
save(self,
filename,
protocol=-1)
Save a pickled serialization of the node to filename .
If filename is None, return a string. |
|
|
|
set_dtype(self,
t)
Set internal structures' dtype. |
|
|
|
|
|
|
|
is_invertible()
Return True if the node can be inverted, False otherwise. |
|
|
|
is_trainable()
Return True if the node can be trained, False otherwise. |
|
|
__init__(self,
input_dim=None,
output_dim=None,
dtype=None,
**kwargs)
(Constructor)
|
|
This node has been automatically generated by wrapping the sklearn.decomposition.nmf.ProjectedGradientNMF class
from the sklearn library. The wrapped instance can be accessed
through the scikits_alg attribute.
- Overrides:
object.__init__
|
_get_supported_dtypes(self)
|
|
Return the list of dtypes supported by this node.
The types can be specified in any format allowed by numpy.dtype.
- Overrides:
Node._get_supported_dtypes
|
_stop_training(self,
**kwargs)
|
|
Concatenate the collected data in a single array.
- Overrides:
Node._stop_training
|
Transform the data X according to the fitted NMF model
This node has been automatically generated by wrapping the sklearn.decomposition.nmf.ProjectedGradientNMF class
from the sklearn library. The wrapped instance can be accessed
through the scikits_alg attribute.
Parameters
- X: {array-like, sparse matrix}, shape (n_samples, n_features)
- Data matrix to be transformed by the model
Attributes
- n_iter_ : int
- Actual number of iterations for the transform.
Returns
- W: array, shape (n_samples, n_components)
- Transformed data
- Overrides:
Node.execute
|
is_invertible()
Static Method
|
|
Return True if the node can be inverted, False otherwise.
- Overrides:
Node.is_invertible
- (inherited documentation)
|
is_trainable()
Static Method
|
|
Return True if the node can be trained, False otherwise.
- Overrides:
Node.is_trainable
|
stop_training(self,
**kwargs)
|
|
Learn a NMF model for the data X.
This node has been automatically generated by wrapping the sklearn.decomposition.nmf.ProjectedGradientNMF class
from the sklearn library. The wrapped instance can be accessed
through the scikits_alg attribute.
Parameters
- X: {array-like, sparse matrix}, shape (n_samples, n_features)
- Data matrix to be decomposed
Attributes
- components_ : array-like, shape (n_components, n_features)
- Factorization matrix, sometimes called 'dictionary'.
- n_iter_ : int
- Actual number of iterations for the transform.
Returns
self
- Overrides:
Node.stop_training
|