Package mdp :: Package nodes :: Class QuadraticDiscriminantAnalysisScikitsLearnNode
[hide private]
[frames] | no frames]

Class QuadraticDiscriminantAnalysisScikitsLearnNode



Quadratic Discriminant Analysis

This node has been automatically generated by wrapping the ``sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

A classifier with a quadratic decision boundary, generated
by fitting class conditional densities to the data
and using Bayes' rule.

The model fits a Gaussian density to each class.

.. versionadded:: 0.17
   *QuadraticDiscriminantAnalysis*

.. versionchanged:: 0.17
   Deprecated :class:`qda.QDA` have been moved to *QuadraticDiscriminantAnalysis*.

**Parameters**

priors : array, optional, shape = [n_classes]
    Priors on classes

reg_param : float, optional
    Regularizes the covariance estimate as
    ``(1-reg_param)*Sigma + reg_param*np.eye(n_features)``

**Attributes**

``covariances_`` : list of array-like, shape = [n_features, n_features]
    Covariance matrices of each class.

``means_`` : array-like, shape = [n_classes, n_features]
    Class means.

``priors_`` : array-like, shape = [n_classes]
    Class priors (sum to 1).

``rotations_`` : list of arrays
    For each class k an array of shape [n_features, n_k], with
    ``n_k = min(n_features, number of elements in class k)``
    It is the rotation of the Gaussian distribution, i.e. its
    principal axis.

``scalings_`` : list of arrays
    For each class k an array of shape [n_k]. It contains the scaling
    of the Gaussian distributions along its principal axes, i.e. the
    variance in the rotated coordinate system.

store_covariances : boolean
    If True the covariance matrices are computed and stored in the
    `self.covariances_` attribute.

    .. versionadded:: 0.17

tol : float, optional, default 1.0e-4
    Threshold used for rank estimation.

    .. versionadded:: 0.17

**Examples**

>>> from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> y = np.array([1, 1, 1, 2, 2, 2])
>>> clf = QuadraticDiscriminantAnalysis()
>>> clf.fit(X, y)
... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
QuadraticDiscriminantAnalysis(priors=None, reg_param=0.0,
                              store_covariances=False, tol=0.0001)
>>> print(clf.predict([[-0.8, -1]]))
[1]

See also

sklearn.discriminant_analysis.LinearDiscriminantAnalysis: Linear
    Discriminant Analysis

Instance Methods [hide private]
 
__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
Quadratic Discriminant Analysis
 
_get_supported_dtypes(self)
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
 
_label(self, x)
 
_stop_training(self, **kwargs)
Transform the data and labels lists to array objects and reshape them.
 
label(self, x)
Perform classification on an array of test vectors X.
 
stop_training(self, **kwargs)
Fit the model according to the given training data and parameters.

Inherited from PreserveDimNode (private): _set_input_dim, _set_output_dim

Inherited from unreachable.newobject: __long__, __native__, __nonzero__, __unicode__, next

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

    Inherited from ClassifierCumulator
 
_check_train_args(self, x, labels)
 
_train(self, x, labels)
Cumulate all input data in a one dimensional list.
 
train(self, x, labels)
Cumulate all input data in a one dimensional list.
    Inherited from ClassifierNode
 
_execute(self, x)
 
_prob(self, x, *args, **kargs)
 
execute(self, x)
Process the data contained in x.
 
prob(self, x, *args, **kwargs)
Predict probability for each possible outcome.
 
rank(self, x, threshold=None)
Returns ordered list with all labels ordered according to prob(x) (e.g., [[3 1 2], [2 1 3], ...]).
    Inherited from Node
 
__add__(self, other)
 
__call__(self, x, *args, **kwargs)
Calling an instance of Node is equivalent to calling its execute method.
 
__repr__(self)
repr(x)
 
__str__(self)
str(x)
 
_check_input(self, x)
 
_check_output(self, y)
 
_get_train_seq(self)
 
_if_training_stop_training(self)
 
_inverse(self, x)
 
_pre_execution_checks(self, x)
This method contains all pre-execution checks.
 
_pre_inversion_checks(self, y)
This method contains all pre-inversion checks.
 
_refcast(self, x)
Helper function to cast arrays to the internal dtype.
 
_set_dtype(self, t)
 
copy(self, protocol=None)
Return a deep copy of the node.
 
get_current_train_phase(self)
Return the index of the current training phase.
 
get_dtype(self)
Return dtype.
 
get_input_dim(self)
Return input dimensions.
 
get_output_dim(self)
Return output dimensions.
 
get_remaining_train_phase(self)
Return the number of training phases still to accomplish.
 
get_supported_dtypes(self)
Return dtypes supported by the node as a list of dtype objects.
 
has_multiple_training_phases(self)
Return True if the node has multiple training phases.
 
inverse(self, y, *args, **kwargs)
Invert y.
 
is_training(self)
Return True if the node is in the training phase, False otherwise.
 
save(self, filename, protocol=-1)
Save a pickled serialization of the node to filename. If filename is None, return a string.
 
set_dtype(self, t)
Set internal structures' dtype.
 
set_input_dim(self, n)
Set input dimensions.
 
set_output_dim(self, n)
Set output dimensions.
Static Methods [hide private]
 
is_invertible()
Return True if the node can be inverted, False otherwise.
 
is_trainable()
Return True if the node can be trained, False otherwise.
Properties [hide private]

Inherited from object: __class__

    Inherited from Node
  _train_seq
List of tuples:
  dtype
dtype
  input_dim
Input dimensions
  output_dim
Output dimensions
  supported_dtypes
Supported dtypes
Method Details [hide private]

__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
(Constructor)

 

Quadratic Discriminant Analysis

This node has been automatically generated by wrapping the ``sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

A classifier with a quadratic decision boundary, generated
by fitting class conditional densities to the data
and using Bayes' rule.

The model fits a Gaussian density to each class.

.. versionadded:: 0.17
   *QuadraticDiscriminantAnalysis*

.. versionchanged:: 0.17
   Deprecated :class:`qda.QDA` have been moved to *QuadraticDiscriminantAnalysis*.

**Parameters**

priors : array, optional, shape = [n_classes]
    Priors on classes

reg_param : float, optional
    Regularizes the covariance estimate as
    ``(1-reg_param)*Sigma + reg_param*np.eye(n_features)``

**Attributes**

``covariances_`` : list of array-like, shape = [n_features, n_features]
    Covariance matrices of each class.

``means_`` : array-like, shape = [n_classes, n_features]
    Class means.

``priors_`` : array-like, shape = [n_classes]
    Class priors (sum to 1).

``rotations_`` : list of arrays
    For each class k an array of shape [n_features, n_k], with
    ``n_k = min(n_features, number of elements in class k)``
    It is the rotation of the Gaussian distribution, i.e. its
    principal axis.

``scalings_`` : list of arrays
    For each class k an array of shape [n_k]. It contains the scaling
    of the Gaussian distributions along its principal axes, i.e. the
    variance in the rotated coordinate system.

store_covariances : boolean
    If True the covariance matrices are computed and stored in the
    `self.covariances_` attribute.

    .. versionadded:: 0.17

tol : float, optional, default 1.0e-4
    Threshold used for rank estimation.

    .. versionadded:: 0.17

**Examples**

>>> from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> y = np.array([1, 1, 1, 2, 2, 2])
>>> clf = QuadraticDiscriminantAnalysis()
>>> clf.fit(X, y)
... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
QuadraticDiscriminantAnalysis(priors=None, reg_param=0.0,
                              store_covariances=False, tol=0.0001)
>>> print(clf.predict([[-0.8, -1]]))
[1]

See also

sklearn.discriminant_analysis.LinearDiscriminantAnalysis: Linear
    Discriminant Analysis

Overrides: object.__init__

_get_supported_dtypes(self)

 
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
Overrides: Node._get_supported_dtypes

_label(self, x)

 
Overrides: ClassifierNode._label

_stop_training(self, **kwargs)

 
Transform the data and labels lists to array objects and reshape them.

Overrides: Node._stop_training

is_invertible()
Static Method

 
Return True if the node can be inverted, False otherwise.
Overrides: Node.is_invertible
(inherited documentation)

is_trainable()
Static Method

 
Return True if the node can be trained, False otherwise.
Overrides: Node.is_trainable

label(self, x)

 

Perform classification on an array of test vectors X.

This node has been automatically generated by wrapping the sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

The predicted class C for each sample in X is returned.

Parameters

X : array-like, shape = [n_samples, n_features]

Returns

C : array, shape = [n_samples]

Overrides: ClassifierNode.label

stop_training(self, **kwargs)

 

Fit the model according to the given training data and parameters.

This node has been automatically generated by wrapping the ``sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

    .. versionchanged:: 0.17
       Deprecated *store_covariance* have been moved to main constructor.

    .. versionchanged:: 0.17
       Deprecated *tol* have been moved to main constructor.

**Parameters**

X : array-like, shape = [n_samples, n_features]
    Training vector, where n_samples in the number of samples and
    n_features is the number of features.

y : array, shape = [n_samples]
    Target values (integers)

Overrides: Node.stop_training