Package mdp :: Package nodes :: Class RadiusNeighborsRegressorScikitsLearnNode
[hide private]
[frames] | no frames]

Class RadiusNeighborsRegressorScikitsLearnNode



Regression based on neighbors within a fixed radius.

This node has been automatically generated by wrapping the ``sklearn.neighbors.regression.RadiusNeighborsRegressor`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

The target is predicted by local interpolation of the targets
associated of the nearest neighbors in the training set.

Read more in the :ref:`User Guide <regression>`.

**Parameters**

radius : float, optional (default = 1.0)
    Range of parameter space to use by default for :meth`radius_neighbors`
    queries.

weights : str or callable
    weight function used in prediction.  Possible values:


    - 'uniform' : uniform weights.  All points in each neighborhood
      are weighted equally.
    - 'distance' : weight points by the inverse of their distance.
      in this case, closer neighbors of a query point will have a
      greater influence than neighbors which are further away.
    - [callable] : a user-defined function which accepts an
      array of distances, and returns an array of the same shape
      containing the weights.

    Uniform weights are used by default.

algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional
    Algorithm used to compute the nearest neighbors:


    - 'ball_tree' will use :class:`BallTree`
    - 'kd_tree' will use :class:`KDtree`
    - 'brute' will use a brute-force search.
    - 'auto' will attempt to decide the most appropriate algorithm
      based on the values passed to :meth:`fit` method.

    Note: fitting on sparse input will override the setting of
    this parameter, using brute force.

leaf_size : int, optional (default = 30)
    Leaf size passed to BallTree or KDTree.  This can affect the
    speed of the construction and query, as well as the memory
    required to store the tree.  The optimal value depends on the
    nature of the problem.

metric : string or DistanceMetric object (default='minkowski')
    the distance metric to use for the tree.  The default metric is
    minkowski, and with p=2 is equivalent to the standard Euclidean
    metric. See the documentation of the DistanceMetric class for a
    list of available metrics.

p : integer, optional (default = 2)
    Power parameter for the Minkowski metric. When p = 1, this is
    equivalent to using manhattan_distance (l1), and euclidean_distance
    (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.

metric_params : dict, optional (default = None)
    Additional keyword arguments for the metric function.

**Examples**

>>> X = [[0], [1], [2], [3]]
>>> y = [0, 0, 1, 1]
>>> from sklearn.neighbors import RadiusNeighborsRegressor
>>> neigh = RadiusNeighborsRegressor(radius=1.0)
>>> neigh.fit(X, y) # doctest: +ELLIPSIS
RadiusNeighborsRegressor(...)
>>> print(neigh.predict([[1.5]]))
[ 0.5]

See also

NearestNeighbors
KNeighborsRegressor
KNeighborsClassifier
RadiusNeighborsClassifier

**Notes**

See :ref:`Nearest Neighbors <neighbors>` in the online documentation
for a discussion of the choice of ``algorithm`` and ``leaf_size``.

http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

Instance Methods [hide private]
 
__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
Regression based on neighbors within a fixed radius.
 
_execute(self, x)
 
_get_supported_dtypes(self)
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
 
_stop_training(self, **kwargs)
Concatenate the collected data in a single array.
 
execute(self, x)
Predict the target for the provided data
 
stop_training(self, **kwargs)
Fit the model using X as training data and y as target values

Inherited from unreachable.newobject: __long__, __native__, __nonzero__, __unicode__, next

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

    Inherited from Cumulator
 
_train(self, *args)
Collect all input data in a list.
 
train(self, *args)
Collect all input data in a list.
    Inherited from Node
 
__add__(self, other)
 
__call__(self, x, *args, **kwargs)
Calling an instance of Node is equivalent to calling its execute method.
 
__repr__(self)
repr(x)
 
__str__(self)
str(x)
 
_check_input(self, x)
 
_check_output(self, y)
 
_check_train_args(self, x, *args, **kwargs)
 
_get_train_seq(self)
 
_if_training_stop_training(self)
 
_inverse(self, x)
 
_pre_execution_checks(self, x)
This method contains all pre-execution checks.
 
_pre_inversion_checks(self, y)
This method contains all pre-inversion checks.
 
_refcast(self, x)
Helper function to cast arrays to the internal dtype.
 
_set_dtype(self, t)
 
_set_input_dim(self, n)
 
_set_output_dim(self, n)
 
copy(self, protocol=None)
Return a deep copy of the node.
 
get_current_train_phase(self)
Return the index of the current training phase.
 
get_dtype(self)
Return dtype.
 
get_input_dim(self)
Return input dimensions.
 
get_output_dim(self)
Return output dimensions.
 
get_remaining_train_phase(self)
Return the number of training phases still to accomplish.
 
get_supported_dtypes(self)
Return dtypes supported by the node as a list of dtype objects.
 
has_multiple_training_phases(self)
Return True if the node has multiple training phases.
 
inverse(self, y, *args, **kwargs)
Invert y.
 
is_training(self)
Return True if the node is in the training phase, False otherwise.
 
save(self, filename, protocol=-1)
Save a pickled serialization of the node to filename. If filename is None, return a string.
 
set_dtype(self, t)
Set internal structures' dtype.
 
set_input_dim(self, n)
Set input dimensions.
 
set_output_dim(self, n)
Set output dimensions.
Static Methods [hide private]
 
is_invertible()
Return True if the node can be inverted, False otherwise.
 
is_trainable()
Return True if the node can be trained, False otherwise.
Properties [hide private]

Inherited from object: __class__

    Inherited from Node
  _train_seq
List of tuples:
  dtype
dtype
  input_dim
Input dimensions
  output_dim
Output dimensions
  supported_dtypes
Supported dtypes
Method Details [hide private]

__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
(Constructor)

 

Regression based on neighbors within a fixed radius.

This node has been automatically generated by wrapping the ``sklearn.neighbors.regression.RadiusNeighborsRegressor`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

The target is predicted by local interpolation of the targets
associated of the nearest neighbors in the training set.

Read more in the :ref:`User Guide <regression>`.

**Parameters**

radius : float, optional (default = 1.0)
    Range of parameter space to use by default for :meth`radius_neighbors`
    queries.

weights : str or callable
    weight function used in prediction.  Possible values:


    - 'uniform' : uniform weights.  All points in each neighborhood
      are weighted equally.
    - 'distance' : weight points by the inverse of their distance.
      in this case, closer neighbors of a query point will have a
      greater influence than neighbors which are further away.
    - [callable] : a user-defined function which accepts an
      array of distances, and returns an array of the same shape
      containing the weights.

    Uniform weights are used by default.

algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional
    Algorithm used to compute the nearest neighbors:


    - 'ball_tree' will use :class:`BallTree`
    - 'kd_tree' will use :class:`KDtree`
    - 'brute' will use a brute-force search.
    - 'auto' will attempt to decide the most appropriate algorithm
      based on the values passed to :meth:`fit` method.

    Note: fitting on sparse input will override the setting of
    this parameter, using brute force.

leaf_size : int, optional (default = 30)
    Leaf size passed to BallTree or KDTree.  This can affect the
    speed of the construction and query, as well as the memory
    required to store the tree.  The optimal value depends on the
    nature of the problem.

metric : string or DistanceMetric object (default='minkowski')
    the distance metric to use for the tree.  The default metric is
    minkowski, and with p=2 is equivalent to the standard Euclidean
    metric. See the documentation of the DistanceMetric class for a
    list of available metrics.

p : integer, optional (default = 2)
    Power parameter for the Minkowski metric. When p = 1, this is
    equivalent to using manhattan_distance (l1), and euclidean_distance
    (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.

metric_params : dict, optional (default = None)
    Additional keyword arguments for the metric function.

**Examples**

>>> X = [[0], [1], [2], [3]]
>>> y = [0, 0, 1, 1]
>>> from sklearn.neighbors import RadiusNeighborsRegressor
>>> neigh = RadiusNeighborsRegressor(radius=1.0)
>>> neigh.fit(X, y) # doctest: +ELLIPSIS
RadiusNeighborsRegressor(...)
>>> print(neigh.predict([[1.5]]))
[ 0.5]

See also

NearestNeighbors
KNeighborsRegressor
KNeighborsClassifier
RadiusNeighborsClassifier

**Notes**

See :ref:`Nearest Neighbors <neighbors>` in the online documentation
for a discussion of the choice of ``algorithm`` and ``leaf_size``.

http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

Overrides: object.__init__

_execute(self, x)

 
Overrides: Node._execute

_get_supported_dtypes(self)

 
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
Overrides: Node._get_supported_dtypes

_stop_training(self, **kwargs)

 
Concatenate the collected data in a single array.
Overrides: Node._stop_training

execute(self, x)

 

Predict the target for the provided data

This node has been automatically generated by wrapping the sklearn.neighbors.regression.RadiusNeighborsRegressor class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

Parameters

X : array-like, shape (n_query, n_features), or (n_query, n_indexed) if metric == 'precomputed'
Test samples.

Returns

y : array of int, shape = [n_samples] or [n_samples, n_outputs]
Target values
Overrides: Node.execute

is_invertible()
Static Method

 
Return True if the node can be inverted, False otherwise.
Overrides: Node.is_invertible
(inherited documentation)

is_trainable()
Static Method

 
Return True if the node can be trained, False otherwise.
Overrides: Node.is_trainable

stop_training(self, **kwargs)

 

Fit the model using X as training data and y as target values

This node has been automatically generated by wrapping the sklearn.neighbors.regression.RadiusNeighborsRegressor class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

Parameters

X : {array-like, sparse matrix, BallTree, KDTree}
Training data. If array or matrix, shape [n_samples, n_features], or [n_samples, n_samples] if metric='precomputed'.
y : {array-like, sparse matrix}
Target values, array of float values, shape = [n_samples]
or [n_samples, n_outputs]
Overrides: Node.stop_training