Package mdp :: Package nodes :: Class RidgeClassifierScikitsLearnNode
[hide private]
[frames] | no frames]

Class RidgeClassifierScikitsLearnNode



Classifier using Ridge regression.

This node has been automatically generated by wrapping the ``sklearn.linear_model.ridge.RidgeClassifier`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

Read more in the :ref:`User Guide <ridge_regression>`.

**Parameters**

alpha : float
    Small positive values of alpha improve the conditioning of the problem
    and reduce the variance of the estimates.  Alpha corresponds to
    ``C^-1`` in other linear models such as LogisticRegression or
    LinearSVC.

class_weight : dict or 'balanced', optional
    Weights associated with classes in the form ``{class_label: weight}``.
    If not given, all classes are supposed to have weight one.

    The "balanced" mode uses the values of y to automatically adjust
    weights inversely proportional to class frequencies in the input data
    as ``n_samples / (n_classes * np.bincount(y))``

copy_X : boolean, optional, default True
    If True, X will be copied; else, it may be overwritten.

fit_intercept : boolean
    Whether to calculate the intercept for this model. If set to false, no
    intercept will be used in calculations (e.g. data is expected to be
    already centered).

max_iter : int, optional
    Maximum number of iterations for conjugate gradient solver.
    The default value is determined by scipy.sparse.linalg.

normalize : boolean, optional, default False
    If True, the regressors X will be normalized before regression.

solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', 'sag'}
    Solver to use in the computational routines:


    - 'auto' chooses the solver automatically based on the type of data.

    - 'svd' uses a Singular Value Decomposition of X to compute the Ridge
      coefficients. More stable for singular matrices than
      'cholesky'.

    - 'cholesky' uses the standard scipy.linalg.solve function to
      obtain a closed-form solution.

    - 'sparse_cg' uses the conjugate gradient solver as found in
      scipy.sparse.linalg.cg. As an iterative algorithm, this solver is
      more appropriate than 'cholesky' for large-scale data
      (possibility to set `tol` and `max_iter`).

    - 'lsqr' uses the dedicated regularized least-squares routine
      scipy.sparse.linalg.lsqr. It is the fatest but may not be available
      in old scipy versions. It also uses an iterative procedure.

    - 'sag' uses a Stochastic Average Gradient descent. It also uses an
      iterative procedure, and is faster than other solvers when both
      n_samples and n_features are large.

      .. versionadded:: 0.17
         Stochastic Average Gradient descent solver.

tol : float
    Precision of the solution.

random_state : int seed, RandomState instance, or None (default)
    The seed of the pseudo random number generator to use when
    shuffling the data. Used in 'sag' solver.

**Attributes**

``coef_`` : array, shape (n_features,) or (n_classes, n_features)
    Weight vector(s).

``intercept_`` : float | array, shape = (n_targets,)
    Independent term in decision function. Set to 0.0 if
    ``fit_intercept = False``.

``n_iter_`` : array or None, shape (n_targets,)
    Actual number of iterations for each target. Available only for
    sag and lsqr solvers. Other solvers will return None.

See also

Ridge, RidgeClassifierCV

**Notes**

For multi-class classification, n_class classifiers are trained in
a one-versus-all approach. Concretely, this is implemented by taking
advantage of the multi-variate response support in Ridge.

Instance Methods [hide private]
 
__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
Classifier using Ridge regression.
 
_get_supported_dtypes(self)
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
 
_label(self, x)
 
_stop_training(self, **kwargs)
Transform the data and labels lists to array objects and reshape them.
 
label(self, x)
Predict class labels for samples in X.
 
stop_training(self, **kwargs)
Fit Ridge regression model.

Inherited from PreserveDimNode (private): _set_input_dim, _set_output_dim

Inherited from unreachable.newobject: __long__, __native__, __nonzero__, __unicode__, next

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

    Inherited from ClassifierCumulator
 
_check_train_args(self, x, labels)
 
_train(self, x, labels)
Cumulate all input data in a one dimensional list.
 
train(self, x, labels)
Cumulate all input data in a one dimensional list.
    Inherited from ClassifierNode
 
_execute(self, x)
 
_prob(self, x, *args, **kargs)
 
execute(self, x)
Process the data contained in x.
 
prob(self, x, *args, **kwargs)
Predict probability for each possible outcome.
 
rank(self, x, threshold=None)
Returns ordered list with all labels ordered according to prob(x) (e.g., [[3 1 2], [2 1 3], ...]).
    Inherited from Node
 
__add__(self, other)
 
__call__(self, x, *args, **kwargs)
Calling an instance of Node is equivalent to calling its execute method.
 
__repr__(self)
repr(x)
 
__str__(self)
str(x)
 
_check_input(self, x)
 
_check_output(self, y)
 
_get_train_seq(self)
 
_if_training_stop_training(self)
 
_inverse(self, x)
 
_pre_execution_checks(self, x)
This method contains all pre-execution checks.
 
_pre_inversion_checks(self, y)
This method contains all pre-inversion checks.
 
_refcast(self, x)
Helper function to cast arrays to the internal dtype.
 
_set_dtype(self, t)
 
copy(self, protocol=None)
Return a deep copy of the node.
 
get_current_train_phase(self)
Return the index of the current training phase.
 
get_dtype(self)
Return dtype.
 
get_input_dim(self)
Return input dimensions.
 
get_output_dim(self)
Return output dimensions.
 
get_remaining_train_phase(self)
Return the number of training phases still to accomplish.
 
get_supported_dtypes(self)
Return dtypes supported by the node as a list of dtype objects.
 
has_multiple_training_phases(self)
Return True if the node has multiple training phases.
 
inverse(self, y, *args, **kwargs)
Invert y.
 
is_training(self)
Return True if the node is in the training phase, False otherwise.
 
save(self, filename, protocol=-1)
Save a pickled serialization of the node to filename. If filename is None, return a string.
 
set_dtype(self, t)
Set internal structures' dtype.
 
set_input_dim(self, n)
Set input dimensions.
 
set_output_dim(self, n)
Set output dimensions.
Static Methods [hide private]
 
is_invertible()
Return True if the node can be inverted, False otherwise.
 
is_trainable()
Return True if the node can be trained, False otherwise.
Properties [hide private]

Inherited from object: __class__

    Inherited from Node
  _train_seq
List of tuples:
  dtype
dtype
  input_dim
Input dimensions
  output_dim
Output dimensions
  supported_dtypes
Supported dtypes
Method Details [hide private]

__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
(Constructor)

 

Classifier using Ridge regression.

This node has been automatically generated by wrapping the ``sklearn.linear_model.ridge.RidgeClassifier`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

Read more in the :ref:`User Guide <ridge_regression>`.

**Parameters**

alpha : float
    Small positive values of alpha improve the conditioning of the problem
    and reduce the variance of the estimates.  Alpha corresponds to
    ``C^-1`` in other linear models such as LogisticRegression or
    LinearSVC.

class_weight : dict or 'balanced', optional
    Weights associated with classes in the form ``{class_label: weight}``.
    If not given, all classes are supposed to have weight one.

    The "balanced" mode uses the values of y to automatically adjust
    weights inversely proportional to class frequencies in the input data
    as ``n_samples / (n_classes * np.bincount(y))``

copy_X : boolean, optional, default True
    If True, X will be copied; else, it may be overwritten.

fit_intercept : boolean
    Whether to calculate the intercept for this model. If set to false, no
    intercept will be used in calculations (e.g. data is expected to be
    already centered).

max_iter : int, optional
    Maximum number of iterations for conjugate gradient solver.
    The default value is determined by scipy.sparse.linalg.

normalize : boolean, optional, default False
    If True, the regressors X will be normalized before regression.

solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', 'sag'}
    Solver to use in the computational routines:


    - 'auto' chooses the solver automatically based on the type of data.

    - 'svd' uses a Singular Value Decomposition of X to compute the Ridge
      coefficients. More stable for singular matrices than
      'cholesky'.

    - 'cholesky' uses the standard scipy.linalg.solve function to
      obtain a closed-form solution.

    - 'sparse_cg' uses the conjugate gradient solver as found in
      scipy.sparse.linalg.cg. As an iterative algorithm, this solver is
      more appropriate than 'cholesky' for large-scale data
      (possibility to set `tol` and `max_iter`).

    - 'lsqr' uses the dedicated regularized least-squares routine
      scipy.sparse.linalg.lsqr. It is the fatest but may not be available
      in old scipy versions. It also uses an iterative procedure.

    - 'sag' uses a Stochastic Average Gradient descent. It also uses an
      iterative procedure, and is faster than other solvers when both
      n_samples and n_features are large.

      .. versionadded:: 0.17
         Stochastic Average Gradient descent solver.

tol : float
    Precision of the solution.

random_state : int seed, RandomState instance, or None (default)
    The seed of the pseudo random number generator to use when
    shuffling the data. Used in 'sag' solver.

**Attributes**

``coef_`` : array, shape (n_features,) or (n_classes, n_features)
    Weight vector(s).

``intercept_`` : float | array, shape = (n_targets,)
    Independent term in decision function. Set to 0.0 if
    ``fit_intercept = False``.

``n_iter_`` : array or None, shape (n_targets,)
    Actual number of iterations for each target. Available only for
    sag and lsqr solvers. Other solvers will return None.

See also

Ridge, RidgeClassifierCV

**Notes**

For multi-class classification, n_class classifiers are trained in
a one-versus-all approach. Concretely, this is implemented by taking
advantage of the multi-variate response support in Ridge.

Overrides: object.__init__

_get_supported_dtypes(self)

 
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
Overrides: Node._get_supported_dtypes

_label(self, x)

 
Overrides: ClassifierNode._label

_stop_training(self, **kwargs)

 
Transform the data and labels lists to array objects and reshape them.

Overrides: Node._stop_training

is_invertible()
Static Method

 
Return True if the node can be inverted, False otherwise.
Overrides: Node.is_invertible
(inherited documentation)

is_trainable()
Static Method

 
Return True if the node can be trained, False otherwise.
Overrides: Node.is_trainable

label(self, x)

 

Predict class labels for samples in X.

This node has been automatically generated by wrapping the sklearn.linear_model.ridge.RidgeClassifier class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

Parameters

X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Samples.

Returns

C : array, shape = [n_samples]
Predicted class label per sample.
Overrides: ClassifierNode.label

stop_training(self, **kwargs)

 

Fit Ridge regression model.

This node has been automatically generated by wrapping the ``sklearn.linear_model.ridge.RidgeClassifier`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

**Parameters**

X : {array-like, sparse matrix}, shape = [n_samples,n_features]
    Training data

y : array-like, shape = [n_samples]
    Target values

sample_weight : float or numpy array of shape (n_samples,)
    Sample weight.

    .. versionadded:: 0.17
       *sample_weight* support to Classifier.

Returns

self : returns an instance of self.

Overrides: Node.stop_training