Package mdp :: Package nodes :: Class SFA2Node
[hide private]
[frames] | no frames]

Class SFA2Node


Get an input signal, expand it in the space of inhomogeneous polynomials of degree 2 and extract its slowly varying components. The get_quadratic_form method returns the input-output function of one of the learned unit as a QuadraticForm object. See the documentation of mdp.utils.QuadraticForm for additional information.

More information about Slow Feature Analysis can be found in Wiskott, L. and Sejnowski, T.J., Slow Feature Analysis: Unsupervised Learning of Invariances, Neural Computation, 14(4):715-770 (2002).

Instance Methods [hide private]
 
__init__(self, input_dim=None, output_dim=None, dtype=None, include_last_sample=True)
For the include_last_sample switch have a look at the SFANode class docstring.
 
_execute(self, x, n=None)
Compute the output of the slowest functions. If 'n' is an integer, then use the first 'n' slowest components.
 
_set_input_dim(self, n)
 
_set_range(self)
 
_stop_training(self, debug=False)
 
_train(self, x, include_last_sample=None)
For the include_last_sample switch have a look at the SFANode class docstring.
 
execute(self, x, n=None)
Compute the output of the slowest functions. If 'n' is an integer, then use the first 'n' slowest components.
 
get_quadratic_form(self, nr)
Return the matrix H, the vector f and the constant c of the quadratic form 1/2 x'Hx + f'x + c that defines the output of the component 'nr' of the SFA node.
 
stop_training(self, debug=False)
Stop the training phase.
 
train(self, x, include_last_sample=None)
For the include_last_sample switch have a look at the SFANode class docstring.

Inherited from unreachable.newobject: __long__, __native__, __nonzero__, __unicode__, next

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

    Inherited from SFANode
 
_check_train_args(self, x, *args, **kwargs)
 
_inverse(self, y)
 
get_eta_values(self, t=1)
Return the eta values of the slow components learned during the training phase. If the training phase has not been completed yet, call stop_training.
 
inverse(self, y)
Invert y.
 
time_derivative(self, x)
Compute the linear approximation of the time derivative.
    Inherited from Node
 
__add__(self, other)
 
__call__(self, x, *args, **kwargs)
Calling an instance of Node is equivalent to calling its execute method.
 
__repr__(self)
repr(x)
 
__str__(self)
str(x)
 
_check_input(self, x)
 
_check_output(self, y)
 
_get_supported_dtypes(self)
Return the list of dtypes supported by this node.
 
_get_train_seq(self)
 
_if_training_stop_training(self)
 
_pre_execution_checks(self, x)
This method contains all pre-execution checks.
 
_pre_inversion_checks(self, y)
This method contains all pre-inversion checks.
 
_refcast(self, x)
Helper function to cast arrays to the internal dtype.
 
_set_dtype(self, t)
 
_set_output_dim(self, n)
 
copy(self, protocol=None)
Return a deep copy of the node.
 
get_current_train_phase(self)
Return the index of the current training phase.
 
get_dtype(self)
Return dtype.
 
get_input_dim(self)
Return input dimensions.
 
get_output_dim(self)
Return output dimensions.
 
get_remaining_train_phase(self)
Return the number of training phases still to accomplish.
 
get_supported_dtypes(self)
Return dtypes supported by the node as a list of dtype objects.
 
has_multiple_training_phases(self)
Return True if the node has multiple training phases.
 
is_training(self)
Return True if the node is in the training phase, False otherwise.
 
save(self, filename, protocol=-1)
Save a pickled serialization of the node to filename. If filename is None, return a string.
 
set_dtype(self, t)
Set internal structures' dtype.
 
set_input_dim(self, n)
Set input dimensions.
 
set_output_dim(self, n)
Set output dimensions.
Static Methods [hide private]
 
is_invertible()
Return True if the node can be inverted, False otherwise.
    Inherited from Node
 
is_trainable()
Return True if the node can be trained, False otherwise.
Properties [hide private]

Inherited from object: __class__

    Inherited from Node
  _train_seq
List of tuples:
  dtype
dtype
  input_dim
Input dimensions
  output_dim
Output dimensions
  supported_dtypes
Supported dtypes
Method Details [hide private]

__init__(self, input_dim=None, output_dim=None, dtype=None, include_last_sample=True)
(Constructor)

 
For the include_last_sample switch have a look at the SFANode class docstring.
Overrides: object.__init__
(inherited documentation)

_execute(self, x, n=None)

 
Compute the output of the slowest functions. If 'n' is an integer, then use the first 'n' slowest components.
Overrides: Node._execute

_set_input_dim(self, n)

 
Overrides: Node._set_input_dim

_set_range(self)

 
Overrides: SFANode._set_range

_stop_training(self, debug=False)

 
Overrides: Node._stop_training

_train(self, x, include_last_sample=None)

 
For the include_last_sample switch have a look at the SFANode class docstring.
Overrides: Node._train

execute(self, x, n=None)

 
Compute the output of the slowest functions. If 'n' is an integer, then use the first 'n' slowest components.
Overrides: Node.execute

get_quadratic_form(self, nr)

 
Return the matrix H, the vector f and the constant c of the quadratic form 1/2 x'Hx + f'x + c that defines the output of the component 'nr' of the SFA node.

is_invertible()
Static Method

 
Return True if the node can be inverted, False otherwise.
Overrides: Node.is_invertible

stop_training(self, debug=False)

 

Stop the training phase.

By default, subclasses should overwrite _stop_training to implement this functionality. The docstring of the _stop_training method overwrites this docstring.

Overrides: Node.stop_training

train(self, x, include_last_sample=None)

 
For the include_last_sample switch have a look at the SFANode class docstring.
Overrides: Node.train