Package mdp :: Package nodes :: Class SelectFromModelScikitsLearnNode
[hide private]
[frames] | no frames]

Class SelectFromModelScikitsLearnNode



Meta-transformer for selecting features based on importance weights.

This node has been automatically generated by wrapping the ``sklearn.feature_selection.from_model.SelectFromModel`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

.. versionadded:: 0.17

**Parameters**

estimator : object
    The base estimator from which the transformer is built.
    This can be both a fitted (if ``prefit`` is set to True)
    or a non-fitted estimator.

threshold : string, float, optional default None
    The threshold value to use for feature selection. Features whose
    importance is greater or equal are kept while the others are
    discarded. If "median" (resp. "mean"), then the ``threshold`` value is
    the median (resp. the mean) of the feature importances. A scaling
    factor (e.g., "1.25*mean") may also be used. If None and if the
    estimator has a parameter penalty set to l1, either explicitly
    or implicity (e.g, Lasso), the threshold is used is 1e-5.
    Otherwise, "mean" is used by default.

prefit : bool, default False
    Whether a prefit model is expected to be passed into the constructor
    directly or not. If True, ``transform`` must be called directly
    and SelectFromModel cannot be used with ``cross_val_score``,
    ``GridSearchCV`` and similar utilities that clone the estimator.
    Otherwise train the model using ``fit`` and then ``transform`` to do
    feature selection.

**Attributes**

`estimator_`: an estimator
    The base estimator from which the transformer is built.
    This is stored only when a non-fitted estimator is passed to the
    ``SelectFromModel``, i.e when prefit is False.

`threshold_`: float
    The threshold value used for feature selection.

Instance Methods [hide private]
 
__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
Meta-transformer for selecting features based on importance weights.
 
_execute(self, x)
 
_get_supported_dtypes(self)
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
 
_stop_training(self, **kwargs)
Concatenate the collected data in a single array.
 
execute(self, x)
Reduce X to the selected features.
 
stop_training(self, **kwargs)
Fit the SelectFromModel meta-transformer.

Inherited from unreachable.newobject: __long__, __native__, __nonzero__, __unicode__, next

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

    Inherited from Cumulator
 
_train(self, *args)
Collect all input data in a list.
 
train(self, *args)
Collect all input data in a list.
    Inherited from Node
 
__add__(self, other)
 
__call__(self, x, *args, **kwargs)
Calling an instance of Node is equivalent to calling its execute method.
 
__repr__(self)
repr(x)
 
__str__(self)
str(x)
 
_check_input(self, x)
 
_check_output(self, y)
 
_check_train_args(self, x, *args, **kwargs)
 
_get_train_seq(self)
 
_if_training_stop_training(self)
 
_inverse(self, x)
 
_pre_execution_checks(self, x)
This method contains all pre-execution checks.
 
_pre_inversion_checks(self, y)
This method contains all pre-inversion checks.
 
_refcast(self, x)
Helper function to cast arrays to the internal dtype.
 
_set_dtype(self, t)
 
_set_input_dim(self, n)
 
_set_output_dim(self, n)
 
copy(self, protocol=None)
Return a deep copy of the node.
 
get_current_train_phase(self)
Return the index of the current training phase.
 
get_dtype(self)
Return dtype.
 
get_input_dim(self)
Return input dimensions.
 
get_output_dim(self)
Return output dimensions.
 
get_remaining_train_phase(self)
Return the number of training phases still to accomplish.
 
get_supported_dtypes(self)
Return dtypes supported by the node as a list of dtype objects.
 
has_multiple_training_phases(self)
Return True if the node has multiple training phases.
 
inverse(self, y, *args, **kwargs)
Invert y.
 
is_training(self)
Return True if the node is in the training phase, False otherwise.
 
save(self, filename, protocol=-1)
Save a pickled serialization of the node to filename. If filename is None, return a string.
 
set_dtype(self, t)
Set internal structures' dtype.
 
set_input_dim(self, n)
Set input dimensions.
 
set_output_dim(self, n)
Set output dimensions.
Static Methods [hide private]
 
is_invertible()
Return True if the node can be inverted, False otherwise.
 
is_trainable()
Return True if the node can be trained, False otherwise.
Properties [hide private]

Inherited from object: __class__

    Inherited from Node
  _train_seq
List of tuples:
  dtype
dtype
  input_dim
Input dimensions
  output_dim
Output dimensions
  supported_dtypes
Supported dtypes
Method Details [hide private]

__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
(Constructor)

 

Meta-transformer for selecting features based on importance weights.

This node has been automatically generated by wrapping the ``sklearn.feature_selection.from_model.SelectFromModel`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.

.. versionadded:: 0.17

**Parameters**

estimator : object
    The base estimator from which the transformer is built.
    This can be both a fitted (if ``prefit`` is set to True)
    or a non-fitted estimator.

threshold : string, float, optional default None
    The threshold value to use for feature selection. Features whose
    importance is greater or equal are kept while the others are
    discarded. If "median" (resp. "mean"), then the ``threshold`` value is
    the median (resp. the mean) of the feature importances. A scaling
    factor (e.g., "1.25*mean") may also be used. If None and if the
    estimator has a parameter penalty set to l1, either explicitly
    or implicity (e.g, Lasso), the threshold is used is 1e-5.
    Otherwise, "mean" is used by default.

prefit : bool, default False
    Whether a prefit model is expected to be passed into the constructor
    directly or not. If True, ``transform`` must be called directly
    and SelectFromModel cannot be used with ``cross_val_score``,
    ``GridSearchCV`` and similar utilities that clone the estimator.
    Otherwise train the model using ``fit`` and then ``transform`` to do
    feature selection.

**Attributes**

`estimator_`: an estimator
    The base estimator from which the transformer is built.
    This is stored only when a non-fitted estimator is passed to the
    ``SelectFromModel``, i.e when prefit is False.

`threshold_`: float
    The threshold value used for feature selection.

Overrides: object.__init__

_execute(self, x)

 
Overrides: Node._execute

_get_supported_dtypes(self)

 
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
Overrides: Node._get_supported_dtypes

_stop_training(self, **kwargs)

 
Concatenate the collected data in a single array.
Overrides: Node._stop_training

execute(self, x)

 

Reduce X to the selected features.

This node has been automatically generated by wrapping the sklearn.feature_selection.from_model.SelectFromModel class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

Parameters

X : array of shape [n_samples, n_features]
The input samples.

Returns

X_r : array of shape [n_samples, n_selected_features]
The input samples with only the selected features.
Overrides: Node.execute

is_invertible()
Static Method

 
Return True if the node can be inverted, False otherwise.
Overrides: Node.is_invertible
(inherited documentation)

is_trainable()
Static Method

 
Return True if the node can be trained, False otherwise.
Overrides: Node.is_trainable

stop_training(self, **kwargs)

 

Fit the SelectFromModel meta-transformer.

This node has been automatically generated by wrapping the sklearn.feature_selection.from_model.SelectFromModel class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

Parameters

X : array-like of shape (n_samples, n_features)
The training input samples.
y : array-like, shape (n_samples,)
The target values (integers that correspond to classes in classification, real numbers in regression).

**fit_params : Other estimator specific parameters

Returns

self : object
Returns self.
Overrides: Node.stop_training