| Home | Trees | Indices | Help |
|
|---|
|
|
Feature selector that removes all low-variance features.
This node has been automatically generated by wrapping the ``sklearn.feature_selection.variance_threshold.VarianceThreshold`` class
from the ``sklearn`` library. The wrapped instance can be accessed
through the ``scikits_alg`` attribute.
This feature selection algorithm looks only at the features (X), not the
desired outputs (y), and can thus be used for unsupervised learning.
Read more in the :ref:`User Guide <variance_threshold>`.
**Parameters**
threshold : float, optional
Features with a training-set variance lower than this threshold will
be removed. The default is to keep all features with non-zero variance,
i.e. remove the features that have the same value in all samples.
**Attributes**
``variances_`` : array, shape (n_features,)
Variances of individual features.
**Examples**
The following dataset has integer features, two of which are the same
in every sample. These are removed with the default setting for threshold::
>>> X = [[0, 2, 0, 3], [0, 1, 4, 3], [0, 1, 1, 3]]
>>> selector = VarianceThreshold()
>>> selector.fit_transform(X)
array([[2, 0],
[1, 4],
[1, 1]])
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
Inherited from Inherited from |
|||
| Inherited from Cumulator | |||
|---|---|---|---|
|
|||
|
|||
| Inherited from Node | |||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
Inherited from |
|||
| Inherited from Node | |||
|---|---|---|---|
|
_train_seq List of tuples: |
|||
|
dtype dtype |
|||
|
input_dim Input dimensions |
|||
|
output_dim Output dimensions |
|||
|
supported_dtypes Supported dtypes |
|||
|
|||
Feature selector that removes all low-variance features.
This node has been automatically generated by wrapping the ``sklearn.feature_selection.variance_threshold.VarianceThreshold`` class
from the ``sklearn`` library. The wrapped instance can be accessed
through the ``scikits_alg`` attribute.
This feature selection algorithm looks only at the features (X), not the
desired outputs (y), and can thus be used for unsupervised learning.
Read more in the :ref:`User Guide <variance_threshold>`.
**Parameters**
threshold : float, optional
Features with a training-set variance lower than this threshold will
be removed. The default is to keep all features with non-zero variance,
i.e. remove the features that have the same value in all samples.
**Attributes**
``variances_`` : array, shape (n_features,)
Variances of individual features.
**Examples**
The following dataset has integer features, two of which are the same
in every sample. These are removed with the default setting for threshold::
>>> X = [[0, 2, 0, 3], [0, 1, 4, 3], [0, 1, 1, 3]]
>>> selector = VarianceThreshold()
>>> selector.fit_transform(X)
array([[2, 0],
[1, 4],
[1, 1]])
|
|
|
|
Reduce X to the selected features. This node has been automatically generated by wrapping the sklearn.feature_selection.variance_threshold.VarianceThreshold class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters
Returns
|
|
|
Learn empirical variances from X. This node has been automatically generated by wrapping the sklearn.feature_selection.variance_threshold.VarianceThreshold class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters
Returns self
|
| Home | Trees | Indices | Help |
|
|---|
| Generated by Epydoc 3.0.1 on Tue Mar 8 12:39:48 2016 | http://epydoc.sourceforge.net |