DBN binodesΒΆ
Download dbn_binodes.py
.
"""
This file contains everything needed for the binet version of the DBN,
based on Pietros non-binet DBN node implementation.
"""
import numpy as np
import mdp
import bimdp
from dbn_nodes import DBNLayerNode
class DBNLayerBiNode(bimdp.BiNode, DBNLayerNode):
"""Adapter to turn the DBNLayerNode into a BiNode."""
def __init__(self, node_id, hidden_dim, visible_dim=None, dtype=None):
super(DBNLayerBiNode, self).__init__(node_id=node_id,
hidden_dim=hidden_dim,
visible_dim=visible_dim,
dtype = dtype)
def _is_bi_learning(self):
return self._updown_initialized
# v as the first argument is filled with the x value
def _up_pass(self, v, epsilon=0.1, decay=0.0, momentum=0.0):
v, pv, deltav = super(DBNLayerBiNode, self)._up_pass(
v, epsilon, decay, momentum)
# pv and deltav are currently not used,
# but could be passed in the message
return v
# h has a different dimension than x, so have to transport it in message,
# x is None, but is always given as the first argument
def _down_pass(self, x, h, top_updates=0, epsilon=0.1, decay=0.0,
momentum=0.0):
v, pv, deltav = super(DBNLayerBiNode, self)._down_pass(
h, top_updates, epsilon, decay, momentum)
# pv and deltav are currently not used
return None, {"h": h}
class DBNMasterBiNode(bimdp.BiNode):
"""Node sits atop the DBN and manages the updown training phase."""
def __init__(self, dbn_ids, sender_id, node_id="dbn_master",
input_dim=None, output_dim=None, dtype=None):
"""Initialize node.
sender_id -- id of the sender node at the flow bottom.
dbn_ids -- List with the ids of all the DBN node in the correct order.
"""
self.dbn_ids = dbn_ids
self.sender_id = sender_id
super(DBNMasterBiNode, self).__init__(node_id=node_id,
input_dim=input_dim,
output_dim=input_dim,
dtype=dtype)
@bimdp.binode_coroutine(["msg_x", "msg"])
def _train(self, x, msg_x, max_iter, min_error, msg):
"""Manage the DBN training."""
i = 0
error = np.inf
while i < max_iter and error > min_error:
## up execution phase
orig_x = msg_x
msg = {}
for dbn_id in self.dbn_ids:
msg[dbn_id + "->method"] = "up_pass"
x, _, _ = yield orig_x, msg, self.sender_id
## down execution phase
msg = {}
for dbn_id in self.dbn_ids:
msg[dbn_id + "->target"] = -1
msg[dbn_id + "->method"] = "down_pass"
msg[self.sender_id + "->target"] = self.node_id
msg[self.sender_id + "->no_x"] = True # avoid x dimension error
msg["h"] = x
x, _, _ = yield None, msg, -1
## execution phase
# do one normal execution for the error calculation
x, msg_x, _ = yield orig_x, None, self.sender_id
## inverse phase
msg = {}
for dbn_id in self.dbn_ids:
msg[dbn_id + "->method"] = "inverse"
msg[self.sender_id + "->target"] = self.node_id
msg[self.sender_id + "->no_x"] = True
x, _, _ = yield x, msg, -1
## calculate new error and restart up phase
i += 1
error = float(mdp.numx.absolute(orig_x - msg_x).sum())
## this should end the training
raise StopIteration()
@mdp.extension_method("html", DBNMasterBiNode, "_html_representation")
def master_html_representation(self):
if self._coroutine_instances and "_train" in self._coroutine_instances:
co_locals = self._coroutine_instances["_train"].gi_frame.f_locals
return (['iter counter: %d' % co_locals["i"],
'error: %.5f' % co_locals["error"]])
else:
return ""
def get_DBN_flow(n_layers, hidden_dims):
"""Factory function for DBNs."""
dbn_ids = []
nodes = [bimdp.nodes.SenderBiNode(node_id="sender")]
for i_layer in range(n_layers):
dbn_ids.append("dbn_%d" % (i_layer+1))
nodes.append(DBNLayerBiNode(node_id=dbn_ids[i_layer],
hidden_dim=hidden_dims[i_layer]))
nodes.append(DBNMasterBiNode(dbn_ids=dbn_ids,
sender_id="sender",
node_id="dbn_master"))
return bimdp.BiFlow(nodes)